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Abstract 

The potential of the Madden-Julian Oscillation (MJO) to influence the climate and weather 

in both tropical and extratropical regions is of utmost importance for the global warming and cli-

mate change discussion.  In this context, understanding how the MJO responds to the warming of 

the planet is a necessary step to build our physical comprehension on the way in which global 

warming influences extreme events of precipitation and temperature fields. Here we address the 

issue of the MJO response to global warming by means of a toy model of the MJO activity based on 

a single nonlinear triad interaction involving two convectively coupled equatorial wave modes, 

namely a Rossby and a Kelvin wave, and a barotropic Rossby mode. The two equatorial modes are 

known to play an important role in the planetary-scale circulation features associated with the 

MJO within the tropics, while the barotropic Rossby mode is related to its tropical-extratropical 

teleconnection. In addition, since moisture convergence is also known to play an important role in 

the MJO dynamics, here we mimic this effect by representing the coupling between the equatorial 

waves and moist convection in terms of the wave-CISK formulation. We also analyze in this formu-

lation the role of the diurnal cycle of the moisture field, which can resonantly couple the equatorial 

Rossby mode of the triad with a high-frequency inertio-gravity wave. The inertio-gravity mode is 

thought of as representing the high-frequency convective systems embedded in the MJO. The effect 

of global warming is analyzed by changing the maximum value of the moisture field. 

The results show that an enhanced moisture can allow the equatorial wave modes to get in 

resonance with the barotropic Rossby mode, making the wave triad to undergo stronger energy 

modulations. This stronger energy modulation of the triad interaction might suggest a stronger 

MJO activity under a moister (warmer) environment. Also, our results indicate that an increased 

moisture content renders possible the MJO low frequency envelope to excite a high frequency grav-

ity mode. We further show by changing the amplitude of gravity mode that the energy modulation 

of the triad becomes more intense, with an enhanced back and forth energy transfer between the 

equatorial gravity and Rossby modes, affecting also the kelvin wave. This indicates a strong necessi-

ty of a better representation of gravity waves in GCMs in order to properly simulate the effect of 

global warming on the MJO.  
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Figure 1: Dispersion curves of all the equatorial wave types. The figure displays the nondimensional  

eigenfrequencies as a function of the nondiensional zonal wave number. The dimensionless quantities are 

defined according to (2.3.9). From Kiladis et al. (2009) 

 

Figure 2: Change in Kelvin wave frequency under increase in atmospheric water vapor, the legend in the 

right upper corner display the amount of water vapor in g/kg as well the propagation speed of the wave.. 
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dynamics with different values of Q0 . It is shown that the decrease of the frequency of the Kelvin wave 
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Figure 4: Time evolution of the mode energies referred to a numerical integration of the triad sys-

tem(2.4.3a, b, c) for a representative example composed of a zonal wavenumber 2 Kelvin mode, an equa-

torial Rossby mode with zonal wavenumber 4 and meridional index n = 1 and a barotropic Rossby mode 

with zonal wavenumber 2 and meridional wavenumber 2. Each panel corresponds to different value of the 

moisture content: Q0 = 0 (upper left), Q0 = 36.47g/Kg (upper right), Q0 = 50g/Kg (lower left) and Q0 = 

79.44g/Kg (lower right). 

 

Figure 5: Energy exchange between an Equatorial Rossby (ER) and an equatorial Gravity mode gov-

erned by the duet system (2.4.17), for different values of Q0 . The ER wave is the same interacting  triplet  

mentioned above.  

 

Figure 6: Time evolution of the mode energies of the triad in the four-wave dynamics (2.5.2a,b,c,d). The 

moisture amount is fixed with the value that leads the duet ER-G to match the resonance condition with 

the diurnal frequency (Q0 = 79.44g/Kg), and the corresponding values of the gravity mode initial ampli-

tude are given by: G0 (upper left), 10 G0 (lower left), 50G0 (upper right) and 100G0 (lower right).  

Figure 7: Time evolution of the mode energies of the triad in the four-wave dynamics (2.5.2a,b,c,d), for 

an initial gravity mode amplitude of 50G0 and the following values of Q0: a) Q0=0 (upper left), b) Q0= 
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Figure 9: Phase space perspective of the integration displayed in Fig. 7, displaying the energy of Kelvin 

mode as a function if the ER mode energy 

 

Figure 10: Similar to Fig. 7, but for another set of modes (see text) and for a diurnal cycle of the heat 

forcing being described by a half rectified sine function. 
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1 Chapter 1: INTRODUCTION 

1.1 Global warming: 

Climate change science has a somewhat illustrious past dating back at least to the be-

ginning of the XIXth century. Joseph Fourier (1768 - 1830) and John Tyndall (1820 – 1893) 

already hiphotesized the idea that some of its constituting gases turns the atmosphere opaque 

for terrestrial radiation, what is known today as greenhouse effect in which some gases retain 

inside the Earth system part of infrared radiation that otherwise would be lost to space. Svant 

Arrhenius (1859 – 1927) was the first to associate the doubling in CO2 levels with a 4-degree 

increase in the global average temperature. An important step toward what is known as cli-

mate change science nowadays was Jules Charney´s report entitled: “Carbon dioxid and cli-

mate: a scientific assessment” from 1979. Again, the doubling of CO2 concentration in the 

atmosphere is associated with a rise in global temperature between 3 to 5 degrees. For a brief 

history of climate change science, see Neelin (2011, chapter 1.4.3) and Held and Soben (2000, 

chapter 1). However, it was not until the end of the XXth century that a systematic coherent 

approach to the climate change problem, the Intergovernmental Pannel of Climate Change 

(IPCC), begun under UN oversight.  

The warming of the planet is one of the most clear aspects of the climate changes due 

to the steady increase of carbon dioxid concentration in the atmosphere. Furthermore, projec-

tions show that the concentration will rise further into the XXIst century, increasing the 

greenhouse effect associated with it (Le Quére et.al., 2014). An important consequence of the 

global temperature increase refers to its possible change on the extreme climate events, espe-

cially due to their economical and societal impacts (IPCC, 2013). In fact, observational stud-

ies have shown that both extreme heat waves and the heavy rainfall frequency and amplitude 

have increased in the last decades (Myhre et. al., 2019, Easterling et.al., 2000). In addition, 

modeling studies show that this increase of both amplitude and frequency of extreme climate 

events will continue further into the XXIst century (Seneviratne et al. 2012). Conversely, un-

derstanding how global warming influences the statistical properties of the climate variables, 

especially the tail of their probability distribution that defines the extreme climate events, is a 

rather difficult task. If the climate were a static thermodynamical system, the answer would 

rely only upon the increased capacity of the atmosphere to retain water vapor when undergo-

ing warming, i.e, increasing the air temperature enhances the air capacity to retain water va-
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por, which in turn increases rainfall on one hand and latent heat release on the other. Howev-

er, the climate is a multiscale complex dynamical system in which the dynamics interacts with 

the thermodynamics in a simbiotic fashion. In this scenario, attributing to human activity the 

changing behaviour of hydrological cycle among other variables is no longer a trivial endeav-

our, as well as distinguishing the effects of the natural climate variability from those related to 

the antropogenic radiative forcing on the data (see, for instance, Compo and Sardeshmukh, 

2010; Solomon et al. 2011). 

Nevertheless, there are two major points that emerge from the IPCC report. The first 

point refers to  the scientific basis of the attribution of the observed change in global climate 

(AR5, 2013), in which there is no doubt, despite of the difficulties mentioned above, that the 

recently observed warming of the planet is caused by the build up of greenhouse gases in the 

atmosphere related to human activity. The IPCC AR5 (2013) states that: “it is extremely like-

ly that human influence has been the dominant cause of the observed warming since the mid 

twentieth century”. The second point is regarding the uncertainty on the impact of the global 

warming on the whole climate system. In fact, there is a scientific gap to be fulfilled in order 

to correctly assess the properly representation of the principal climate variability modes in 

GCMs (General Circulation Models). The GCMs used in the IPCC simulations exhibit a not 

very accurately performance in representing even some of the most basic aspects of climate 

features (Flato et al. 2013), including cloud cover, convection organization and its interaction 

with large-scale dynamics and tropical-extratropical interactions (Wang et al. 2019). Bony et. 

al.(2015) argues for four urgent aspects, including the large-scale dynamics interaction with 

clouds, to be improved in future climate simulations for a better assessment of the effects of 

climate change. In spite of several improvements in the last decades, IPCC models still strug-

gle to accurately simulate key aspects of climate dynamics. While this remains true, there will 

doubt cast on the assessment of climate change effects (Knutti, 2008). 

In order for a numerical model of the climate system to accurately simulate it, it is 

necessary a better understanding of the physical mechanisms underlying the behaviour of the 

system and how a rise in the mean temperature field can affect these mechanisms. Generally, 

atmospheric processess are too complex and, consequently, it is commom the use of simpli-

fied theoretical models, or toy models, to analyse the dynamics of their evolution, limiting 

cases and their dependence upon key parameters. For example, Dijkstra, (2013) presented a 

series of toy models to describe some of the principal components of climate variability, such 



3 

 

as the North Atlantic Oscillation (NAO – Chapter 7) and the ElNiño (Chapter 8). Majda 

(2009) shows a toy model for the intraseazonal oscillation known as Madden-Julian Oscilla-

tion (MJO) that captures some of the main properties associated with this phenomenon. The 

aim of this work is to use a toy model of the MJO, following Majda (2009), to evaluate and 

assess the climate system response under the warming of the planet. 

The MJO is the natural candidate to serving as a bridge between global warming and 

climate changes, especially changes in extreme events associated with the hydrological cycle 

such as floods and droughts, along with severe storms that in turn have enormous impact over 

human life and society. The IPCC models still struggle to accurately simulate the MJO (Jiang 

et al. 2015), what perhaps is one the most source of uncertainties for climate projections. Sev-

eral modeling and observational studies have indicated a MJO activity change under climate 

change yet not conclusive (Jones and Carvalho, 2004; 2011; Arnold et al. 2013; Bui and 

Maloney, 2018; Rushley et al. 2019). That is the reason why a better conceptual understand-

ing of the MJO is important, having been described as the “holy grail of tropical meteorolo-

gy” (Raymond, 2001). This is a figure of speech employed by Raymond in order to highlight 

the extreme importance of the MJO and its effects on the whole climate and weather systems, 

which is the central to this work. 

 

1.2 Madden-Julian Oscillation 

The presence of the water vapor in the atmosphere, also called moisture, is a key char-

acteristic of the tropical atmosphere. In the absence of horizontal temperature gradient, the 

amount of moisture is determinant for convection intensity (Sobel et al., 2001; Bretherton et 

al. 2004), a hypothesis that is known as weak temperature gradient (WTG). Tropical convec-

tion is organized into several time and spatial scales, from single cells to mesoscale systems 

(Houze, 2004), which build up the organization of synoptic-scale convectively coupled equa-

torial waves and ultimately the planetary-scale envelope of the MJO (Majda 2007; Kiladis et. 

al., 2009 and references therein).  

The Madden Julian Oscillation (MJO) is the most prominent feature on intraseasonal 

(0-100 days) timescales in the tropical belt (Madden and Julian; 1971;1972). Not only does 

the MJO have a significant influence over tropical climate and weather, but it also affects the 

midlatitude circulation (Zhang, 2013; Lau and Waliser, 2012). One example of its importance 
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is the MJO influence over precipitation in the Amazon forest region (Muza and Carvalho 

2006; Carvalho et al. 2008; Dias et al.2019) as well as in the SACZ (South Atlantic Converge 

Zone) (Carvalho et al. 2008; Muza et al. 2009; Grimm, 2019) that controls the amount of 

summertime precipitation in central and southeast Brazil, basically the major source of water 

for agriculture and energy productions of Brazil. In spite of its enormous importance for 

short-term climate variability, the MJO remains an important source of uncertainty for climate 

modeling. This uncertainty source in climate modeling by the MJO may be due to its lack of a 

deeper theoretical understanding. For a review of the state-of-the-art of the of theories that 

attempt to explain the MJO, see Wang et al.(2019). 

The MJO is a global-scale envelope (10000-40000km) (wavenumber 1-4) of enhanced 

convection that appears in the Indian Ocean and propagates trough the western Pacific Ocean 

with a phase speed of the order of 5m/s (Madden and Julian, 1994) and group velocity close 

to zero (see Majda and Stechmann 2009 for the skeleton model of the MJO). 

Therefore, due to its influence on the global climate, as well as its structure that natu-

rally connects water vapor in the lower tropical atmosphere with the organized convection in 

mesoscale up to large-scale dynamics, the MJO is a natural candidate to serve as a bridge be-

tween global warming and climate change. This work rests strongly on the hypothesis that a 

possible way that global warming can alter global climate dynamics is via an increase in water 

vapor (moisture) concentration and latent heat release in convection processes. The effects of 

moist convection are twofold: it serves as the major source of energy in the tropical atmos-

phere through latent heat release and binds together large-scale dynamical features that com-

prise for the MJO envelope. Our focus here is to use the MJO as a conveyor belt linking 

warming of the planet and other global climate changes. The envelope of the MJO, in the 

most simplistic representation, can be viewed as a Matsuno-Gill (Matsuno , 1966 ;  Gill, 

1980) type of response to a heating in the midtroposphere, that is, an excitation of two equato-

rial wave types, equatorial Rossby and  Kelvin waves having the first baroclinic mode vertical 

structure. In this simplified setting adopted here, the moisture spatio-variability couples these 

two equatorial wave-modes, resulting in the characteristic wave speed of the MJO-type fea-

ture. Apart from this tropical character of the MJO, another important characteristic feature of 

the MJO that makes it an obvious object of concern for any atmospheric scientist is its ability 

to influence weather and climate globally via its interaction with the major teleconnection 

patterns (Lau and Waliser, 2012). Indeed, the MJO interacts with the Pacific-North America 
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(PNA) pattern (Liebmann and Hartmann 1984), Pacific-South America pattern (PSA) (Mo 

and Higgins 1994), Antarctic oscillation (Carvalho et al. 2005) and the North-Atlantic Oscil-

lation (NAO) (Lin et al. 2009; Jiang et al. 2017). The interaction of tropical modes of variabil-

ity, such as the MJO, with middle and higher latitude circulations is another topic of extreme 

interest for theoretical analysis and has also been considered in this study. 

  

1.3 Tropical-extratropical interaction: 

The low-frequency variability (defined as time-scales longer than the synoptic-scale 

variability) of the atmospheric flow is characterized by the existence of significant anomalies 

of the dynamical fields having a highly coherent spatial variability. This coherent spatial 

structure makes the different geographically fixed centers of action of the climate anomalies 

to be strongly correlated with each other, characterizing the so-called teleconnection patterns. 

This concept was first introduced by Jacob Bjerknes while studying the El Niño impacts on 

the global climate and has been extensively applied in the contexts of climate modeling and 

observations. Some of these teleconnection patterns exhibit their action centers connecting 

tropical and extratropical regions, being therefore believed to be responsible for the connec-

tion between tropical and midlatitude circulations. 

Besides the MJO being responsible for the dominant intraseasonal variability within 

the tropics, it also interacts with the midlatitude circulation via some of the teleconnection 

patterns mentioned above. For a complete review of teleconnections in the intraseasonal time-

scale involving the MJO, see Roundy (2012) and Stan et al. (2017). Observational evidences 

(e.g., Horel and Wallace1981; Wallace and Gutzler 1981; Blackmon et al. 1984; Karoly 1989) 

have shown that the teleconnection patterns linking tropics and extratropics are characterized 

by an equivalent barotropic vertical structure. Likewise, modeling studies on the impact of 

tropical thermal forcings have demonstrated that the atmospheric circulation obtained as a 

response to the imposed diabatic forcing is baroclinic over the tropics and barotropic over 

middle and higher latitudes (e.g., Simmons 1980; Hoskins and Karoly 1981). The latter point 

has justified the utilization of the barotropic vorticity model with a prescribed divergence 

forcing mimicking the upper troposphere effect of tropical heat sources in explaining the ob-

served teleconnection patterns linking tropics and extratropics (e.g., Hoskins at al. 1977; 

Grimm and Silva Dias 1995; Coelho et al. 2014). Nevertheless, as the diabatic heating associ-
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ated with deep convection only directly excites equatorially trapped wave modes having a 

first baroclinic structure (e.g., Gill 1980; Matsuno, 1966; DeMaria 1985; Kasahara 1984), a 

more complete theoretical description of the impact of tropical deep convection heating on the 

midlatitude circulation must consider a coupling mechanism of barotropic Rossby waves with 

baroclinic equatorial wave-modes. Kasahara and Silva Dias (1986) have pointed out the role 

of the linear coupling among the different vertical modes through the vertical shear of the 

background flow. Majda and Biello (2003) demonstrated the role of nonlinear resonance be-

tween barotropic and equatorial baroclinic Rossby waves in the long-wave region of the zonal 

wavenumber spectrum, while Raupp et al.(2008) studied the dynamics of resonant triads in-

volving barotropic Rossby modes and other equatorial wave-types in the primitive equations. 

The latter work was extended in Raupp and Silva Dias (2009) with the inclusion of a diurnally 

varying diabatic forcing, which resonantly excites equatorial inertia-gravity modes that may 

constitute resonant triads with a barotropic Rossby wave-mode having a large midlatitude 

extension. 

Therefore, the nonlinear interaction involving equatorial wave modes excited by deep 

convection heating and barotropic Rossby modes is an essential dynamical mechanism for the 

tropics-midlatitude teleconnections. As the MJO is known to be strongly coupled with deep 

convection heating, the nonlinear coupling mentioned above might also be a possible way of 

accounting for the MJO impact on the extratropics through its interaction with teleconnection 

patterns. Chen et al.(2015) derived an asymptotic reduced model for the tropics-extratropics 

interaction involving the MJO. Their model consists of a nonlinear triad interaction involving 

convectively coupled equatorial Rossby or Kelvin mode, a MJO mode and a barotropic 

Rossby mode. The MJO mode in their theoretical model is defined according to the skeleton 

model of Majda and Stechmann (2009), in which the MJO is a planetary-scale envelope de-

scribed by a combination of nondispersive Rossby and Kelvin wave packets forced by deep 

convection heating, which in turn is parameterized in terms of a wave-activity field that repre-

sents meso-scale convective systems embedded in the planetary-scale envelope and a mois-

ture transport equation. Here, we adopt a similar yet simpler approach based on a nonlinear 

triad interaction involving equatorial Rossby and Kelvin modes, both coupled with deep con-

vection heating, and a barotropic Rossby mode. Despite the proximity with Chen et al. (2015), 

Majda and Biello (2003) and Majda and Stechmann (2009), the present work distinguishes 

from them in both the dynamical setting and scope. For instance, Chen et al. (2015) use MJO 
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as a mode in a triad interaction, while the present work uses the triad interaction to undersand 

the MJO envelope response to global warming. In addition, the skeleton model proposed by 

Majda and Stechmann (2009) does not describe the wave triad interaction as a way to think 

the large-scale envelope, instead they use a prescribed function to represent the envelope and 

link it with Rossby and Kelvin modes through moisture source and sink terms. Our setting is 

to use the triad interacion among planetary-scale wave modes in order to understand the 

changing in the MJO internal dynamics as a response to global warming. 

 

1.4 The model and objective: 

Given the fact that the Madden-Julian Oscillation (MJO) is one of the natural candi-

dates to connect the increase of global average temperature and climate changes, the present 

study aims to investigate from a theoretical point of view, in terms of the governing equations 

of the atmospheric dynamics, the potential impact of the increase of the global average tem-

perature of the atmosphere on the dynamics of the MJO.  

For this purpose, given the considerations described in the previous sections of this 

chapter, we consider a simplified description of the MJO dynamics based on a single interact-

ing wave triad composed of planetary-scale convectively coupled equatorial Rossby and Kel-

vin modes and a barotropic Rossby mode. The coupling between the equatorial wave modes 

with deep convection heating is described here in the simplest possible setting by adopting the 

linear wave-cisk hypothesis (Hayashi 1970; Stevens and Lindzen 1978) in which the heating 

is proportional to the lower-troposphere moisture convergence produced by the waves, with 

the moisture field being prescribed to mimic the observed meridional structure of the specific 

humidity in the atmosphere. If the diurnal cycle of the moisture field is considered, the triad is 

coupled with a fourth wave-mode, an equatorial inertia-gravity mode, through the linear wave 

interaction mechanism between equatorial Rossby and inertia-gravity modes proposed by 

Raupp and Silva Dias (2010). The presence of the inertio-gravity mode in this case can be 

thought of as representing the smaller-scale convective motion embedded in the MJO. 

Then, the effect of global warming is studied by changing the maximum value of the 

specific humidity, since the warmer the climate the higher the water vapor concentration in 

the atmosphere, according to the Clausis-Clayperon law. We have shown that the moisture 

intensity plays a crucial role in the energy exchanges among the interacting waves of the triad 
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through the modification of the linear eigenfrequencies of the equatorial wave modes and thus 

the mismatch among the eigenfrequencies of the triad components. Thus, the results have 

shown that increasing the water vapor concentration of the atmosphere might trigger nonline-

ar resonances that are absent otherwise, and consequently increase the intensity of intrasea-

sonal oscillations. Also, the results have shown that the water vapor can binds one slow mo-

tion mode such as an equatorial Rossby wave with a high frequency mode such as a gravity 

wave, through coupling with the diurnal cycle of the specific humidity. This mechanism pro-

vides a way by which the resonant triad can excite the gravity mode. Gravity modes are 

known to play a crucial role in the geostrophic adjustment and in triggering deep convection. 

Conversely, this mechanism can also potentially make the gravity wave to modulate the ener-

gy exchange inside the triad involving the MJO modes, thus influencing the MJO activity. 

Due to the complexity of the climate system and consequently of its supposed re-

sponses and feedbacks with changes of the global average temperature, the analysis per-

formed here aims to understand the essential physics related to the effect of global warming 

on the MJO by considering a toy model that contains the essential ingredients of the nonline-

arity and the interaction between moist convection and large-scale wave dynamics. In fact, the 

three-wave interaction equations constitute the simplest setting of the nonlinearity manifesta-

tion and appear in any wave system having quadratic nonlinearities. Consequently, nonlinear 

triad interactions are widely studied in several fields of science, such as nonlinear optics, 

plasma physics and geophysical fluids dynamics. For a complete set of applications and theo-

ry review, see Craik (1985). Lynch (2003) describes the dynamics of resonant Rossby wave 

triads in the barotropic quasi-geostrophic equations and highlights its similarity with a simple 

mechanical system: the swinging spring. Kartashova and L’yov (2007) proposed a theoretical 

model for the intraseasonal oscillations of the atmosphere based on a cluster of a few connect-

ed triads of barotropic Rossby waves. 

The remainder of this work is organized as follows. Chapter 2 presents the theoretical 

introduction as well the model description. Chapter 3 presents the numerical solutions of the 

toy model and analysis of results. Chapter 4 presents the concluding remarks. Chapter 5 pre-

sents sugestions for future works.  
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2 Chapter 2: Theoretical Introduction 

2.1 Mathematical prelude: 

In this short section we will establish some common ground of definitions and nota-

tions. To avoid obscuring the goal of this work, these mathematical background concepts 

have not been presented in a rigourous fashion. 

 

2.1.1 Fourier Analysis:   

In a periodic domain it is common to use Fourier modes to analyse the dynamical 

evolution of the system in linear PDEs. Basically, it is assumed that the solution is a series of 

all possible Fourier modes in the following sense: 

 


=

−=

−=
k

k

tkxi

kectx )(),(             (2.1) 

where kc  denodes the mode amplitude. Equation (2.1) means that the solution is given as a 

sum of oscillation modes in space as well as in time, where k, known as wavenumber, is the 

frequency of oscillations in space and  is the temporal oscillation frequency. The relation 

between   and k is known as dispersion relation.   

 

2.1.2 Vector basis and inner product: 

 

A subset of elements in a vector space is called a basis if any element in the vector 

space can be uniquely written as a series of the elements of the subset. Example: the func-

tions   k

ikxe form a basis of the  2,0
2L space, i.e the space of square integrable functions in 

−2 periodic domain. 

An inner product is a measure of the angle between two vectors in the space. Another 

way to understand is that, the inner product mesures the strenght of the projection of one vec-

tor onto another. The inner product used throughout this work is of the form: 

=gf , inner product of f with g =  ++

b

a

dxgfgfgf *

33

*

22

*

11      (2.2) 
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where  Tffff 321=  and  Tgggg 321= , with the superscript ”T” meaning 

transposition operation and * the complex conjugate. 

A basis is said to be orthonormal if, given any of its elements  , , 0, =  and 

1, = . 

 

2.1.3 Eigenvectors and eigenvalues: 

An equation of the form: =  , where  is a linear operator acting on the vector 

 and  is a complex number, is said to be an eigenvector/eigenvalue problem. Given two 

vectors on a linear space,  , , the operator   is called self-adjoint if   = ,, . In 

this case, all eigenvalues are real numbers and the eigenvectors form an orthogonal set. The 

operator is said skew-hermitian if  −= ,, .In this case, if the operator is bounded, 

the eingenvalues are all pure imaginary numbers and the eigenvectors also form an orthogo-

nal set. In the present model, this property has been demonstrated by Silva Dias et al. (1983) 

for the linear operator associated with the first baroclinic mode equations. 

 

2.1.4 Notation: 

Throughout this work, the following symbols/operators/characteristic values are as-

sumed: 

),( vuVH =  is the horizontal wind vector filed, with u and v indicating its zonal (west 

- east) and meridional (south – north) components, respectively; 

)u,v(VH −=⊥ ; 

W is the vertical velocity field; 

f is the Coriolis parameter; 

1111 sm2810,2
dy

df −−−==  is the meridional gradient of planetary vorticity at the equa-

tor; 

2ms8.9g −=  is the gravity acceleration; 

yx
div H




+




=    is the horizontal divergence; 
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 is the potencial temperature and k3000  corresponds to its reference value; 

N = 0.01 s-1 is the Brunt-Vaisala frequency or the buoyancy frequency of oscillation, 

which is assumed here to be a constant; 

2

2

2

2

yx 


+




= is the horizontal Laplacian operator; 

z
w

y
v

x
u

tDt

D




+




+




+




= is the material derivative; 

kgK

J
CP 1006= is the heat capacity at constant pressure; 

H = 16km is the height of troposphere; 

VL = 2.5 X 106 J/Kg is the latent heat of vaporization/condensation.  

 

2.2 The model description: 

Boyd (2018, Chapter 2) describes the validity of a number of approximations widely 

used in geophysical fluid dynamics. The approximations we use in this work on the full 

primitive Euler equations constitute the so-called hydrostatic Boussinesq equations , on the 

equatorial beta-plane with rigid lid vertical boundary conditions with W = 0 at z = 0 and z = 

H. It is well-known that the separation of variables of these equations into the vertical and 

horizontal-time varying structures, lead to a Shallow Water (SW) system for each vertical 

mode, with the vertical mode solutions satisfying a Sturm-Liouville problem (Valis, 2017, 

Majda 2003). Mathematically, the Euler equations with the assumptions mentioned above 

takes the form: 

0

0

2

0









g

z

P

SW
g

N

Dt

D

WVdiv

PyV
Dt

DV

Q

ZHH

HH
H

=




=+

=+

−=+ ⊥

         (2.2.1 a,b,c,d) 

(2.2.1 a) is the horizontal momentum equation; (2.2.1b) is continuity or mass conser-

vation equation; (2.2.1 c) the thermodynamic or energy conservation, with SQ denoting the 
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diabatic heat forcing; (2.2.1 d) is the hydrostatic balance equation and ZW in equation 

(2.2.1b) refers to the vertical derivative of the vertical velocity. 

The separation of variables mentioned above leads to an equation for the vertical 

structure of the form: 

 

mmL =    

where 
2

2

dz

d
L =  and 

2

2

c

N
=  , with c being the separation constant. For the rigid-lid 

boundary conditions 
dz

d
= 0 at z = 0 and z = H, the eigensolutions of this Sturm-Liouville 

problem are given by: m = 
...2,1,0

)cos(
=








mH

zm
. Similarly, the separation constant c is ob-

tained from the eigenvalues   according to: 
m

NH
cm = .  

As the vertical structure equation with the rigid-lid boundary conditions constitute a 

Sturm-Liouville problem, the operator L is self-adjoint and the eigensolutions forms an or-

thogonal set. 

The m=0 mode is called the barotropic mode, m=1 the first barocinic mode and so on. 

The field variables of equations (2.2.1) can then be written in the following way: 

 

)cos(2
),,(

),,(

),,(

),,(

),,,(

),,,(

1

1

H

z

tyxp

tyxV

tyxp

tyxV

tzyxP

tzyxVH 








+







=








  

)sin(2
),,(

),,(

),,,(

),,,(

H

z

tyx

tyxw

tzyx

tzyxW 

 







=










     (2.2.2 a,b,c) 

)sin(
2

),,(),,,(
H

z

H
tyxStzyxS qQ


=  

where  2 is a suitable normalization constant. Equations (2.2.2 a,b, c) constitute the trun-

cated Galerkin expansions retaining only the barotropic and the first baroclinic modes for the 

solution, as well as a single deep convection heating profile for the diabatic heat forcing. 

Such truncation was considered because we are interested only in the barotropic mode asso-

ciated with tropical-extratropical interactions and the first baroclinic mode related to deep 
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convection heating. This truncation has been considered in both theoretical and modeling 

studies on the MJO (e.g., Fuchs and Raymond 2017). Majda and Stechmann (2003),; Khoud-

er and Majda (2001), among others, include the second baroclinic mode related to shallow 

and stratiform clouds, which are necessary for a more accurate description of the MJO life 

cycle. 

However, for simplicity we shall consider here only the deep convection heating and, 

therefore, truncation (2.2.2a, b, c) is sufficient. 

Substituing (2.2.2) into (2.2.1), taking the z-derivative of (2.2.1c), using the continui-

ty and hydrostatic balance equations into (2.2.1c) and taking the projection of (2.2.1) onto 

the barotropic and first baroclinic modes yield: 

 

.SVdivcpV
t

p

;pyVVVVV
t

V

;0Vdiv

;pyVV)Vivd(VVVV
t

V

q1H
2

1
1

1111
1

H

11H11

−=+•+




−=+•+•+




=

−=++•+•+




    (2.2.3 a,b,c,d) 

 

where c  is the separation constant associated with the first baroclinic mode, 


NH
cc == 1  

and • is the usual scalar product between two vectors in 3 . Physically, the parameter c rep-

resents the characteristic speed of the linear equatorial wave modes, as will be seen later. 

Equations (2.2.3 a,b) represent the evolution of the barotropic mode. The condition of nondi-

vergence appears because the characteristic velocity of the baroropic mode , m=0, is infinite, 

which implies the nondivergent condition in order for finite solutions to be possible; qS  rep-

resents the projection of the vertical derivative of the diabatic heat forcing onto the first 

baroclinic mode vertical structure. 
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2.3  Solutions of the linearized and unforced system 

Equations (2.2.3 a,b), when linearized around a resting state, take the form: 

 

.0divV

;pyV
t

V

=

−=+




                    (2.3.1 a,b)     

 

Due to the nondivergence condition, (2.3.1) can be written in the streamfunction-

vorticity version by taking the curl of equation (2.3.1a): 

 

0=



+





xt
            (2.3.2) 

 

where  is the stream function given by ( ) ),(, xyvu −=  and  is the relative 

vorticity. Let us consider the following ansatz for equation (2.3.2): 

 

)lysin(Be)t,y,x( )tkx(i −=  

 

where the sine function is chosen for the meridional structure in order for the solution to 

have a zero meridional velocity at the meridional boundaries defined at y = ± Ly, with Ly rep-

resenting the distance from the equator to a pole. In fact, in a more realistic model that con-

siders the compressibility of the atmosphere, the barotropic waves have a small decay factor 

multiplying the meridional eigenfunction (Raupp et al. 2008), so that the exactly non-

trapping nature of the barotropic waves obtained here does not significantly differ from the 

divergent barotropic Rossby waves of the compressible primitive equations.  

Substituing the above ansatz into (2.3.2), the following dispersion relation is obtained: 

 

22
)(

lk

k
k

+
−=


            (2.3.3) 

 

Equation (2.3.3) is the well-known dispersion relation of the barotropic Rossby 

waves. As one can easily verify, the barotropic Rossby wave is not equatorially trapped, 
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which makes it ideal for connecting the tropical region with the extratopics. In addition, it 

has been shown that the barotropic Rossby wave activity peaks at midlatitude regions, that is, 

if somehow a barotropic Rossby mode is excited at the equatorial region it will reach the 

maximum amplitude at midlatitudes. Details about the barotropic nondivergent equations can 

be found in Pedlosky (1987). 

Assuming non-forced solutions, the equations (2.2.3 c,d), linearized about a resting 

state take the following form: 

 

01

21

11
1

=+




−=+




divVc
t

p

pyV
t

V


 

or, alternatively, in non-vectorial form: 

 

.0divVc
t

p

;
y

p
yu

t

v

;
x

p
yv

t

u

1
21

1
1

1

1
1

1

=+







−=+








−=−





        (2.3.4 a,b,c) 

 

The system above is the well-known shallow water (SW) system. For details of SW 

theory, including laws of conservations, see (Zeitlin, 2018). Also, for a more thorough de-

scription of the solutions and mathematical properties of (2.3.3) system, see (Majda, 2003 

Chapter. 9). Matsuno (1966) was the first to derive the solutions of equations (2.3.3) as zon-

ally propagating waves (Pedlosky 1987; Vallis, 2017) In summary, following Matsuno 

(1966), one seeks wave solutions as in (2.1): 

 


=

−=

−=
k

k

)tkx(i
k e)y(c)t,y,x(             (2.3.5) 

where  T)t,y,x(p)t,y,x(v)t,y,x(u)t,y,x( = and  Tk ypyvyuyc )(ˆ)(ˆ)(ˆ)( = represents the 

wave the amplitudes. The amplitudes have a functional dependance on the y-direction allow-

ing the wave activity to either increase or decrease away from the equator. Physically, the 
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waves must decay far away from the source, and, this can only happen if the amplitude decays 

away from equator, that is, the solutions be equatorially trapped. In this sense, the equator 

here acts as a waveguide in which a myriad of wave types exists. Contrary to midlatitudes 

where the size of the Coriolis parameter f constrains the large-scale movement to be approx-

imately geostrophic, in the equatorial belt the Coriolis parameter is small and changes its sign, 

allowing for other types of large-scale wave motions to coexist. Substituing (2.3.5) into 

(2.3.4), the following matrix system is obtained: 

 

0=+− Li ;   































−

=

0

0

0

y
ik

y
y

iky

L 



   (2.3.6) 

 

As one can easily verify the linear operator above is skew-hermitian, which implies 

that the eigenvalues i are pure imaginary, meaning the temporal frequency   is a real val-

ue, thus there is no source of instability in this setup. Also, the fact that the linear operator L 

in (2.3.6) is skew-hermitian implies that the corresponding eigenvectors form an orthogonal 

set regarding the inner product defied in (2.2) with the interval [a, b] being replaced by 

 − . 

After properly algebraic manipulations, it is possible to reduce the system (2.3.6) to a 

single differential equation for the meridional wind: 

 

0)(
2

22
2

2

2

2

2

=−−−+ v
c

yk
k

cdy

vd 




       (2.3.7) 

 

This is the well-known quantum harmonic oscillator whose solutions are described in 

Quantum Physics textbooks. Equation (2.3.7) admits bounded solutions only if: 

 

12)( 2

2

2

+=−− n
k

k
c

c






          (2.3.8) 
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where n is a positive integer, called meridional wavenumber. Two fundamental constants ap-

pear in the equation above: c and  . These constants are used to make (2.3.8) dimensionless 

in the following fashion: 

 

( )

2

1

2

1

2

1
)(;)(,










c
kk

c
yy

c

→→→         (2.3.9)   

Thus, equation (2.3.8) in nondimensional form is written as: 

 

12)( 22 +=−− n
k

k


           (2.3.10) 

This cubic equation above defines the dispersion relation for the linear wave solutions of the 

first baroclinic equations. There are three distinct roots of (2.3.10) corresponding to slow 

motion equatorial Rossby waves (ER) and two fast modes corresponding to an eastward iner-

tia-gravity wave and a westward inertia-gravity wave. An especial case refers to n = 0, where 

there are only two branches. One branch represents a slow westward propagating mode that 

is similar to the slow Rossby modes for large zonal wavenumbers and to the inertio-gravity 

modes for small zonal wavenumbers. The other one is an eastward propagating inertio-

gravity mode. The westward branch of the n = 0 solution has been labeled as mixed Rossby-

gravity mode or Yanai mode. There is yet another solution not contemplated by (2.3.7). This 

solution appears when the meridional wind is set zero and is called Kelvin wave, being la-

belled as n=-1 for completeness. Fig.1 shows all the eigenmodes of the linearized first baro-

clinic equations (2.3.4). 
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Figure 1: Dispersion curves of all the equatorial wave types. The figure displays the nondimensional  

eigenfrequencies as a function of the nondiensional zonal wave number. The dimensionless quantities are de-

fined according to (2.3.9). From Kiladis et al. (2009) 

 

Each  is an eigenvalue of the differential equation (2.3.7) for the meridional structure 

of the meridional wind. The eigenfunctions of the equation (2.3.7) is the widely known para-

bolic cylinder functions given by  
)

2
(

2

)()(

y

mm eyHyV
−

= ; where )(yHm are the Hermite poly-

nomials of 
thm  degree, which the first three are given by: 

;1)(0 =yH ;2)(1 yyH = 24)( 2

2 −= yyH . These polynomials satisfy the following recurrence 

relation 11 22)( −+ −= mmm nHyHyH . Furthermore, the parabolic cylinder functions form an 

orthogonal basis on the ( )− ,L
2 vector space.  

These wave modes form an orthogonal and complete set in the space of the solutions 

of the SW system (2.3.4) (Silva Dias and Shubert, 1983). Therefore, the horizontal structure 

and the time dependence of the first baroclinic and barotropic modes can be written as: 
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  (2.3.11 a) 

)sin(),,(
)(

lyBetyx
tkxi B−=          (2.3.11 b) 

 

The barotropic wind can be recovered from (2.3.11 b) by the relations: 

 

 ( ) ),(, xyvu −= , ( ) ))sin(),cos((,
)()(

lyikBelyBevu
tkxitkxi BB  −−

−= .   (2.3.12) 

 

Equations (2.3.11a) and (2.3.11b) are the solutions for the baroclinic and barotropic 

fields, respectively. The sum is taken over all triples (n,k,a) where n s the meridional wave-

number, k is the zonal wavenumber and a is the wave type (Kelvin, Rossby, eastward and 

westward inertia-gravity and Yanai) and  C is an arbitrary constant that represents the ampli-

tude of the (n,k,a) mode. 

Surprisingly, the longitude-time power spectrum of raw atmospheric data, when apro-

prietely filtered and divided by a background spectrum (see Wheeler and Kiladis 1999 for 

details), significantly matches the dispersion curves shown in Fig. 1 (see Kiladis et al.2009 

and references therein) despite the fact these dispersion curves are solutions of the SW system 

for a dry dynamics linearized around a motionless state. The only feature appearing in the raw 

data power spectrum that is not a solution of (2.3.6)  is associated with the MJO activity. 

 

2.3.1  Nonlinearity and diabatic forcing 

Equation (2.3.11) represents the solutions of (2.3.6) and (2.3.1), which constitute the 

linearized and unforced version of system (2.2.3). In the linear theory, the superposition prin-

ciple is valid, that is, given two eigensolutions of a wave equation their linear combination is 

also a solution. Each eigenmode labeled by the triplet (n,k,a) is a separate solution of the line-

arized system. However, in the full equations (2.2.3) there are two mechanisms that can break 

down the independence of the eigenmodes: the nonlinearity and the moist convection. Before 

obtaining our reduced toy model that considers these two mechanisms, for clarity of exposi-
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tion we first illustrate their roles in coupling different eigenmodes separately. As will be 

shown below, the nonlinearity can couple two equatorial wave modes with a barotropic 

Rossby wave mode in interacting triads, whilst the moist convection may couple different 

equatorial wavemodes in duets. In addition, the moist deep convection forcing may also play 

an important role in the nonlinear triad interactions by modifying the linear eigenfrequencies 

of the equatorial wave modes. 

 

2.3.2 Nonlinearity 

Let us consider the dimensionless form of the nonforced version of the nonlinear evo-

lution equations for the baroclinic and  the barotropic modes: 

 

11
1

111
1

pVdivV
t

p

VVVVpyV
t

V

•−=+




•−•−=++

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      (2.4.1 a,b,c) 

  ),(.2 111111 −•−+•−=



+



 ⊥ JdivVVdivVcurlVcurlVV
xt

 

 

where we have written the equation for the barotropic mode in terms of the vorticity conserva-

tion, with J corresponding to the Jacobian operator. The nondimensionalization of the equa-

tions above has been done by considering the equatorial Rossby deformation radius 

2

1

)(


c
L = as the length-scale and the inverse of the Coriolis parameter, 2

1

)(
−

= cT , as time-

scale, as well as c and 
2c  for velocity and pressure scales, respectively. The nonlinearities 

appearing on the right hand side of (2.4.1) are quadratic. Quadratic nonlinearity is a common 

feature of fluid dynamics equations due to the advection term of the material derivative. In 

equation (2.4.1a),  the nonlinear terms represent the advection of the baroclinic wind by the 

barotropic wind and vice-versa, while in equation (2.4.1b) is the advection of the pressure 

field by the barotropic wind. In contrast, only the self-interactions involving the barotropic 

and baroclinic components of the wind field contribute to the time evolution of the barotropic 

mode. One of the main hyphotesis of the present work is referred to the well-kown weakly 

nonlinear regime, i.e., the regime in which the eigenmodes of the linear system dominate the 
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dynamics on a time-scale of the order of a complete oscillation of the wave, and the nonline-

arity is felt by the system only in a much longer timescale than the characteristic oscillation 

periods of the waves involved. In addition, the (x, y) structure of the waves is preserved in 

this regime, and the nonlinearity acts only to make the wave amplitudes to change in time due 

to the energy exchanges among different modes. Recall that ),( 111 vuV =  and ),( vuV = refer 

to the baroclinic and barotropic horizontal wind fields, respectively. 

From the infinite set of possible eigensolutions given by (2.3.11), as discussed in 

Chapter 1, our toy model of the MJO activity will consider only an interacting triad composed 

of an equatorial Rossby mode, an equatorial Kelvin wavemode and a barotropic Rossby 

mode, since a single interacting triad constitutes the elementary form of nonlinearity manifes-

tation and, in addition, these wave modes are known to play important roles in different fea-

tures of the MJO. In later sections we will also include an equatorial inertia-gravity mode, 

which will be coupled with the equatorial Rossby mode through the diurnal cycle of the dia-

batic forcing. Thus, to illustrate how the nonlinearity works in our barotropic-first baroclinic 

truncated Boussinesq model, let us consider the following ansatz: 
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In the equations above, the subscript K, R and B refer to the equatorial Kelvin, Rossby 

and barotropic Rossby modes, respectively, with K(t), R(t) and B(t) representing their respec-

tive time-evolving amplitudes. Substituting the ansatz (2.4.2) into equations (2.4.1), making 

use of the linear eigenvalue problem (2.3.6) and the barotropic Rossby mode dispersion rela-

tion (2.3.3), the orthogonality of the trigonometric functions on the  2,0 interval and the 

orthogonality of the equatorial mode eigenfunctions, we obtain a set of three ODEs for the 

time evolution of the wave amplitudes: 
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In the equations above, 
RKB  −−= is the mismatch among the mode eigenfre-

quencies of the triad, jE  , j = K or R, refer to the intrinsic energy norm of each equatorial 

mode, and RB

K , RK

B and KB

R are the nonlinear coupling coefficients, which measure the pro-

jection of the nonlinear terms involving products of two modes onto a third mode, given by: 
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where * indicate complex conjugation and CP means cyclic permutation. The coefficient RB

K  

can be simplified recalling that 0=Kv , while the coefficient KB

R can be obtained by just rela-

bling RKKR →→ , . On the other hand, the coupling coefficient B
RK is given by: 
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where 
dy

du
vik

j

jjj −= .  

To obtain equation (2.4.4), the following interaction condition was used: 
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The relation above is called resonance condition in space, which is automatically satis-

fied in this work by the choice of the interacting modes. 

As mentioned earlier, in the weakly nonlinear regime the wave amplitudes evolve in a 

longer time-scale than the corresponding wave phases. Consequently, when   is large, the 

highly oscillatory factor on the RHS of (2.4.3) inhibits the energy exchanges among the 

waves. In this sense, the smaller the mismatch among the eigenfrequencies of the triad com-

ponents, the stronger the amplitude (energy) modulations. The maximum amplitude (energy) 

variation occurs when the triad is resonant ( 0= ). As will be shown in Chapter 3, for plan-

etary-scale waves, the dry dynamics governed by system (2.4.3) exhibits very small energy 

modulations because the mismatch frequency associated with interacting triads of planetary-

scale equatorial Rossby, Kelvin and barotropic Rossby waves is large in general. However, as 

will be demonstrated in the next section, the stationary harmonic of the diurnal cycle of dia-

batic heating reduces the time-frequency of the equatorial wave modes, specially the Kelvin 

mode. Consequently, depending on the moisture content, the latent heat forcing may lead such 

triads to match the resonance condition and, thus, undergo significant nonlinear energy ex-

changes. 

The total energy of the triad equations (2.4.3a, b, c) is conserved if the coupling coef-

ficients satisfy the relation: 

0=−+ KR

B

KB

R

RB

K  .      

 

2.3.3  Diabatic Forcing: 

Latent heat release from condensation of water vapor, into liquid water is the major 

source of energy in the tropical belt. Additionally, the presence of water vapor strongly influ-

ences the large-scale wave dynamics. Dias and Paulius (2009) showed the decrease of the  

phase velocity of an equatorial wave when it gets inside a moist region like the ITCZ. Two 

main features of tropical dynamics with effects on weather and climate around the globe exist 

because of the interaction between moist convection and wave dynamics, the CCEW (convec-

tively coupled equatorial waves) (Wheeler and Kiladis, 1999; Kiladis et al., 2009) and the 

MJO itself in which moist convection plays a key role in any of its theoretical models (Wang, 

2005; Wang and Chen, 2016).  
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A simple setup is adopted here to analyze the interaction of dry wave dynamics with 

moist convection. In this context, two effects will be shown, the change in the eigenfrequency 

of the linear waves associated with the amount of water vapor and the linear duet coupling of 

equatorial waves due to the meridional gradient of water vapor concentration where the mag-

nitude of the coupling depends on the the amount of vapor as well. 

The mechanism of changing the wave phase velocity has an additional effect that is 

important for the nonlinear wave dynamics. Indeed, as discussed in the previous section, in 

the weakly nonlinear regime, the nonlinear triad interaction is more effective when the waves 

are close to resonance. On the other hand, one can observe that for a fixed k (wavenumber), if 

the phase velocity changes the frequency of the waves changes as well, since 
k

k
c

)(
= . Con-

sequently, in the moist dynamics the reduction of the wave speed may allow for nonlinear 

resonances that are absent in the dry dynamics i.e, water vapor can change the frequency of 

the waves such that it may allow a wave triad to match the resonance condition. 

To illustrate the role of moist convection in the dynamics of the equatorial wave 

modes in a simplified fashion, let us consider the diabatic version of the linearized equations 

(2.3.4 a,b,c) for the first baroclinic mode evolution. In dimensionless form, these equations 

are written as: 
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

=++


 ⊥

          (2.4.6 a,b) 

 

Recall that qS  in the equation above (2.4.6b) is proportional to the projection of the 

vertical derivative of diabatic heat source onto the first baroclinic mode eigenfunction: 

 

0

),,(

 p

ZV
q

C

tyxQHgL
S


=            (2.4.7) 

where ),,( tyxQZ
 is the projection of the vertical gradient of the heat releasing rate onto the 

first baroclinic mode. Additionally, the wave-CISK theory assumes that ),,( tyxQZ
 is propor-

tional to the convergence of horizontal wind in the lower troposphere. Mathematically: 
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−=
NCLz

HZ dzdivVyqtfQtyxQ
0

0 )()(),,(        (2.4.8) 

 

in which the minus sign implies convergence of the horizontal wind and ZNCL km2  is the 

height of cloud base. 0Q  is the maximum value of the background specific humidity, which 

depends on the global average temperature by the Clausius-Clayperon equation, while q(y) 

and f(t) represent its spatial and time variabilities, respectively. It is a major assumption of 

this work that increasing the temperature of the troposphere and oceans results in more water 

vapor in the atmosphere. The rise in the amount of water vapor increases precipitation, which 

in turn increases latent heat release. To mimic the climatological spatial distribution of mois-

ture in the atmosphere, with its maximum along the intertropical convergence zone (ITCZ), 

the meridional structure of the forcing is defined as a gaussian centered at equator. In dimen-

sionless units, it can be expressed as: 

2

2

)(

y

eyq
−

=            (2.4.9) 

 

which in dimensional units refers to have the variance given by the equatorial Rossby radius 

kmc 1500)( 2

1


−

 . Raupp and Silva Dias (2010) have explored the effect of changing the po-

sition of the ITCZ function defined above on the wave interactions. They showed that as the 

position changes the strenght of the linear and the nonlinear coupling coefficients changes as 

well, which implies a sensitivity of the wave interactions to the meridional position of the heat 

forcing. Nevertheless, as the goal of this work is to analyse the effect of changing the mois-

ture content on the wave interactions, we strict to the case where the ITCZ function is cen-

tered at the equator. In addition, by assumption the forcing has no zonal structure. The tem-

poral dependence is defined to represent the diurnal cycle of the convective heating. In this 

way, we have set f(t) by two functions that mimic different aspects of diurnal cycle of convec-

tion: i) a full wave rectified sine and ii) a half wave rectified sine: 

 

)sin()( ttf =            (2.4.10 a) 
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where 


2
=   indiates the frequency of the diurnal cycle and  = the duration of the day in 

dimensionless units, that is 9.2
24


ET

h
. By assumption we choose to set the diurnal cycle 

with wavenumber equals zero as if we were looking the whole time to the place where con-

vection occurs. However, the k=1 zonal structure would be more realistic to mimic the diurnal 

cycle resulting from solar forcing and will be analysed in a future work. 

Let us now Fourier expand these two functions used here for the time dependent part 

of the heat forcing: 
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      (2.4.11b) 

 

In the expansions above, only the first two terms are considered here, which will be 

labeled hereafter as the stationary and first or transient harmonics, respectively. Combining 

the elements of the Fourier expansion of the full rectified sine function, the heat forcing can 

be expressed as: 
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where we have used Galerkin expansion (2.2.2 a) of the horizontal wind as well as the diver-

genceless condition of the barotropic mode.  

Using (2.4.12), one can rewrite qS as: 
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Therefore, equation (2.4.6b) in dimensionless units becomes: 
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Note that: 
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has dimension of velocity squared. Consequently, la-
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c =          (2.4.15)  

and considering only the stationary mode, it follows that the correction of the characteristic 

linear wave speed of the equatorial wave modes can be expressed as a phase velocity modi-

fied by the moist convection effect (assuming for instance no meridional and time dependen-

cies of the term multiplying the horizontal divergence on equation 2.4.14 to simplify the illus-

tration): 

)
2

1(
2

2

*
c

c
c m


−=            (2.4.16) 

From (2.4.16), it is possible to visualize a basic mechanism by which global warming 

can influence the wave dynamics. The value of 2

mc depends explicitly on 0Q , which, in turn, is 

a exponential function of temperature according to Clausius-Clayperon equation. One obvious 

aspect is that this correction more significantly affects modes characterized by a high diver-

gence, such as Kelvin and inertio-gravity waves. The reintroduction of the meridional struc-

ture and time dependence allows for coupling between different equatorial modes and, as con-

sequence, rotational modes such as equatorial Rossby waves can also be affected. 

Let us now consider again the meridional and time dependencies of the parametric 

heat forcing to illustrate the effect of the moist convection heating on the equatorial wave dy-

namics in a more complete picture. For this purpose, it is convenient to express the first (tran-

sient) harmonic of the diurnal cycle of the heating in the exponential forms: 
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The following development will be explicit only for the first harmonic of fully recti-

fied wave, following the approach of Raupp and Silva Dias (2010). The existence of such 

oscillation in time renders possible to satisfy resonance condition in a non trivial fashion, al-

lowing for the coupling of two distinct modes. In fact, as the equatorial inertia-gravity waves 

exhibit periods close to the diurnal cycle, the mismatch between the frequencies of the equato-

rial gravity mode and the diurnal cycle is compatible with the frequency range of equatorial 

Rossby modes, making possible the existence of resonant interaction between equatorial 

Rossby and gravity waves through the transient harmonic of the diurnal forcing (Raupp and 

Silva Dias 2010). This setup is of interest here because it provides a mechanism through 

which high frequency motions embedded in the MJO can influence the behavior of the large-

scale envelope of the MJO. Several studies have shown the importance of understanding the 

transport of energy and momentum from mesoscale high frequency convective flow to large-

scale slow motion of the MJO (see, for instance, Stechmann and Majda 2011; Majda 

2007).With these considerations, let us consider the following ansatz: 
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Substituting the ansatz above into equations (2.4.14) and (2.4.6a), making use the fact 

that the meridional structure functions satisfy the eigenvalue problem (2.3.6), as well as the 

orthogonality of these eigenfunctions, we obtain: 
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where GG  can be obtained by relabling R →G and, as the pressure fields are real, it follows 

that GRRG  = . 

In the equations above, one can see that the role of the stationary harmonic is to alter 

the natural frequency of oscillation of each of the wave modes. This is a somewhat remarka-

ble result. It shows that the presence of meridional gradient of moisture changes the phase 

velocity of the waves. To make more clear the role of the stationary harmonic of the temporal 

moisture function in modifying the eigenfrequencies of the equatorial modes, we make the 

following transformation of variables ti RetRtR


)()( → , 
ti GetGtG


)()( → . In this way, equa-

tions (2.4.17a, b) now read: 
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       (2.4.18 a,b) 

On the other hand, the role of the first (transient) harmonic of the diurnal cycle is to 

promote a linear coupling between the Rossby and gravity modes. In the equations above, we 

have assumed the following resonance condition is satisfied: 

       

0
2
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


 RG           (2.4.19 ) 

 

2.4  Combining the effects of nonlinearity and diabatic forcing 

Now that we have illustrated the role of the nonlinearity and the diabatic forcing in the 

wavemodes of system (2.2.3), let us now combine their effects to build our toy model of the 

MJO activity. This toy model is the object of analysis in order to shed some light on the 

mechanism linking the increase in the average temperature field with other climate changes 

including extreme events. This toy model will serve as a proxy for the MJO behaviour con-

taining its principal elements: the convectively coupled equatorial Rossby and Kelvin modes 

as constituting the planetary-scale  MJO envelope, the barotropic Rossby mode as the link 
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between tropics and extratropics and the interaction between large-scale equatorial Rossby 

and high frequency gravity waves through diurnal cycle simulating the interaction between 

moist convection and large scale structure of MJO. In this context, to obtain this toy model, 

we consider the following ansatz: 
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Thus, inserting (2.5.1) into (2.2.3) yields: 
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 Chapter 3: RESULTS 

 

As demonstrated in the previous chapter, one of the effects of the parametric thermal 

forcing considered here is to reduce the eigenfrequency of the equatorial wave-modes. This 

effect is assonated with the stationary harmonic of the time dependent part of the moisture 

function and is evidenced by equations (2.4.18a, b). In fact, the equivalent of (2.4.17) for the 

Kelvin wave is given by: 
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In this way, with the transformation of variable for the Kelvin mode spectral coeffi-

cient, 
ti KetKtK


)()( → , it is possible to show that the effective time-frequency of the Kelvin 

mode canbe modified from its eigenvalue due to moisture, vis., 
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Equation (3.2) indicates that the amount of water vapor Q0 determines the intensity of 

the wave slow down. This effect is illustrated in Fig. 2, which shows the computation of the 

time-frequency of the equatorial Kelvin mode according to (3.2), as well as its phase speed 

K

K
pK

k
c


=  for several values of Q0 . For the parameters N = 0.01s-1 and H = 18Km, it fol-

lows that the dry Kelvin wave speed is smcc pK /50= . Nevertheless, one notices from Fig. 

2 that the propagation speed of the equatorial Kelvin mode is substantially reduced as Q0 in-

creases, and so are Kelvin mode eigenfrequencies for all the wavenumbers. In fact, Fig. 2 

shows that for k (wavenumber) = -0.5, the frequency lessens from 0.5 (dry case) to approxi-

mately 0.15. Thus, the magnitude of the decrease of the frequency astonishes. Nevertheless, 

the results displayed in Fig. 2 are compatible with previous theoretical investigations on con-
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vectively coupled equatorial Kelvin waves (see, for instance, Chang and Lim 1988; Wang 

1988; Yang and Rui 2000; Silva Dias and Pauluis 2009). 

The same effect of the stationary harmonic of moist convection in reducing the mode 

time-frequency holds for the equatorial Rossby wave as well, but with a lesser intensity (fig-

ure not shown). The effect is more pronounced in the divergent modes than in the rotational 

modes because of the parametrization of the diabatic forcing considered here, which relies on 

the divergence field of the waves. The effect of this slowdown of the equatorial wave modes 

due to their coupling with moist convection is to allow the possibility of resonant triads in-

volving equatorial Rossby, equatorial Kelvin and barotropic Rossby modes. To demonstrate 

this effect, we have adopted a graphical approach to seek resonant triads involving planetary-

scale equatorial Rossby and Kelvin modes, either coupled or uncoupled with moist convec-

tion, and a barotropic Rossby mode. This graphical approach consists in changing the origin 

of the dispersion curve of one mode type (equatorial Kelvin). Then, the produced intersection 

(if occurs) with the dispersion curve (equatorial Rossby) to the wavenumber of interest along 

the dispersion curve of the barotropic Rossby wave determines the set of three wave-modes 

satisfying the resonant triad conditions (see, for instance, Raupp et al. 2008; Ramirez et al. 

2017). This procedure is illustrated in Fig. 3 for the dry case as well as for the case in which 

the two equatorial modes are coupled with moisture for different values of the parameter Q0. 

  

 

Figure 2: Change in Kelvin wave frequency under increase in atmospheric water vapor, the legend in the right 

upper corner display the amount of water vapor in g/kg as well the propagation speed of the wave. 
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Fig. 3 shows that such resonant interaction involving these three wave types no longer 

exists in the dry case. Indeed, one notices that there is a threshold value of Q0 that allows res-

onant triads involving these three wave types, which corresponds to the value of Q0 for which 

the dispersion curve of the equatorial Rossby wave touches the maximum point of the ba-

rotropic wave dispersion curve. Beyond this threshold, Fig. 3 shows that there are at least two 

barotropic Rossby wave modes that constitute resonant triads with the equatorial Rossby and 

Kelvin modes, for the specified wavenumber of the Kelvin wave chosen in Fig. 3. For higher 

values of the moisture content, the equatorial Rossby wave dispersion curve gets closer to the 

dispersion curve of the barotropic Rossby wave, which implies that resonances become more 

possible. 

As discussed earlier, in the weakly nonlinear regime, the triad interaction becomes 

more expressive, with the modes undergoing stronger energy (amplitude) modulations, when 

the mismatch among the mode frequencies is close to zero, characterizing the so-called reso-

nant triads. Therefore, we expect that for triads composed of a barotropic Rossby mode and 

equatorial Rossby and Kelvin modes, the moisture content might play an important role in the 

energy exchanges among these wave modes. 

To demonstrate this effect, Fig. 4 shows the result of a numerical integration of the tri-

ad system (2.4.3a, b, c) for a representative example composed of a zonal wavenumber 2 Kel-

vin mode, an equatorial Rossby mode with zonal wavenumber 4 and meridional index n = 1 

and a barotropic Rossby mode with zonal wavenumber 2 and meridional wavenumber 2. All 

the time integrations illustrated in this chapter have been performed with a fourth-order Ad-

ams-Bashford scheme with a time step of s310−
. 
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Figure 3: Illustration of the graphical method for searching resonant triads involving equatorial Kel-

vin,equatorial Rossby and barotropic Rossby waves, for the dry case (Q0 = 0), as well as for the moist dynamics 

with different values of Q0 . It is shown that the decrease of the frequency of the Kelvin wave renders possible 

the existence of resonant triads involving these wave types.  

The numerical integration displayed in Fig. 4 has been done with the eigenfrequencies 

of the two equatorial modes being computed through expression (3.2) (both Rossby and Kel-

vin). This is similar to considering only the stationary harmonic of the Fourier expansion of 

the time-dependent part of the moisture field, yielding the equatorial gravity mode of system 

(2.5.2a, b,c, d) to decouple from the waves of the interacting triplet. Thus, Fig. 4 shows the 

time evolution of the mode energies of the triad for different values of the moisture content 

parameter Q0 . It is possible to note that in the dry case (Q0 = 0), the high mismatch among the 

mode eigenfrequencies for this triad inhibits the energy exchanges among the wave modes. In 

contrast, in the moist case the energy modulations become more expressive as Q0 increases. 

However, for very high values of this parameter (e.g., Q0 = 79.44 g/Kg illustrated in the last 

panel), the mismatch gets high again and consequently the magnitude of the energy modula-

tions gets smaller. The value of Q0 for which this triad is resonant refers to Q0 =36.47g/Kg 

(upper right corner). This value of Q0 is higher than what is frequently observed in the real 

atmosphere in present climte conditions. However, given the uncertainty level regarding the 



35 

 

climate projections, this value could be representative of the global warming projections relat-

ed to the least optimistic scenarios of CO2 emissions. Also, the ideia is to show that as the 

moisture increases the system gets closer to resonance, although it does not necessarily match 

the condition exactly. Just by approximating from the resonance condition the system ex-

changes energy more efficiently, which already has an important impact in the atmospheric 

dynamics. One can observe that this case refers to the strongest energy modulations among 

the modes. 

Another important feature observed in Fig. 4 is that, apart from modifying the magni-

tude of the energy modulations through the effect on the mismatch of the eigenfrequencies of 

the triad components, the moisture content also influences the interaction period of the triad 

(i.e., the period of the energy modulation). In fact, the interaction period relies on the coupling 

coefficients, which in turn are functions of the eigenfrequencies of the modes of the triad. 

Thus, as the eigenfrequencies of the equatorial modes are modified by the moisture content, 

apart from the triad mismatch, the nonlinear coupling constants are affected by changing the 

moisture content as well. 
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Fig. 4: Time evolution of the mode energies referred to a numerical integration of the triad system(2.4.3a, b, c) 

for a representative example composed of a zonal wavenumber 2 Kelvin mode, an equatorial Rossby mode with 

zonal wavenumber 4 and meridional index n = 1 and a barotropic Rossby mode with zonal wavenumber 2 and 

meridional wavenumber 2. Each panel corresponds to different value of the moisture content: Q0 = 0 (upper left), 

Q0 = 36.47g/Kg (upper right), Q0 = 50g/Kg (lower left) and Q0 = 79.44g/Kg (lower right). 

In order to illustrate the effect of adding the transient harmonic of the diurnal cycle of 

the convective forcing, Fig. 5 shows the result of the time integration of the reduced system 

(2.4.17a, b) describing the duet interaction between equatorial Rossby and gravity modes 

through this transient harmonic of the moisture function. The transient harmonic in this ex-

ample illustrated in Fig. 5, the equatorial Rossby mode of the triad displayed in Fig. 5 inter-

acts with an eastward propagating inertia-gravity mode with zonal wavenumber 4 and meridi-

onal index n = 3. Fig 5 shows the energy exchange between these tow wave modes for differ-

ent values of the amount of water vapor Q0. As expected from equations (2.4.17), for Q0 =0 

(dry case) there is no interaction between the two modes, as shown in Fig. 5a (upper left cor-

ner). This indicates that what connects these two waves is the presence of water vapor.  The 

presence of moisture is a necessary condition to couple these two modes. In addition, as the 
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amount of water vapor measured by the parameter Q0 modifies the time-frequencies of the 

modes, it determines the possibility of not for these modes to match the resonance condition. 

This can be verified by comparing the panels b, c and d, where the resonant condition is met 

in Fig. 5b (upper right corner), for which case the energy modulations are maximal. 

 

 

Figure 5: Energy exchange between an Equatorial Rossby (ER) and an equatorial Gravity mode governed by the 

duet system (2.4.17), for different values of Q0 . The ER wave is the same interacting  triplet  mentioned above.  

 

So far we have discussed the effect of moisture on the wave dynamics. It was shown 

that the moisture reduces the phase speed of the equatorial waves, as illustrated in Fig. 2 for 

the Kelvin waves. As demonstrated in Fig. 3, this reduction, in turn, allows planetary-scale 

equatorial Rossby and Kelvin modes to achieve the resonance condition with a barotropic 

Rossby wave mode in the triad system (2.4.3). Hereafter throughout this chapter we will ana-

lyze how the moisture content can affect the dynamics of the triad when a gravity mode is 

coupled with the equatorial Rossby mode in the four-wave system (2.5.2). Thus, Figures 6-9 

show the time integration of the four-wave system (2.5.2a,b,c,d) for the modes composing the 
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triad interaction illustrated in Fig. 4 coupled with the duet modes displayed in Fig. 5. Thus, 

the representative example of the four-wave system displayed in these figures is composed of 

the following eigenmodes: 

 

Mode 1: k1 = -2; n1 = -1 (Kelvin); 

Mode 2: k2 = 4; n2 = 1 (Equatorial Rossby) 

Mode 3: k3 = k1 + k2; l3 = 2 (barotropic mode); 

Mode 4: k4 = -4; n4 = 3 (equatorial gravity); 

 

In the first numerical simulation (Fig. 6) the amplitude of the gravity wave is consid-

ered as a free parameter of the four-wave system (2.5.2a,b,c,d) composed of the barotropic 

Rossby and the equatorial Kelvin, Rossby and gravity modes. One of the effects of increasing 

the moisture content in the lower troposphere is to enhance the thermodynamic instability of 

the atmospheric column by creating an upward buoyance force. This is in general measured 

by the corresponding increase of CAPE (Convective Available Potential Energy). The gravity 

mode is the wave type that is directly associated with this deep convection process. Moreover, 

the amplitude of the gravity wave in a region far from equilibrium, such as inside a region of 

intense deep convection activity, is uncertain. Consequently, it is plausible to explore the dy-

namics of the four-wave system with a broad range of values for the gravity mode initial am-

plitude.  

 Figure 6 shows how the change in gravity wave initial amplitude affects the dynamics 

of the modes of the triad in the four-wave system (2.5.2a,b,c,d).  
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Figure 6: Time evolution of the mode energies of the triad in the four-wave dynamics (2.5.2a,b,c,d). The mois-

ture amount is fixed with the value that leads the duet ER-G to match the resonance condition with the diurnal 

frequency (Q0 = 79.44g/Kg), and the corresponding values of the gravity mode initial amplitude are given by: G0 

(upper left), 10 G0 (lower left), 50G0 (upper right) and 100G0 (lower right).  

 

Although the values of 50G0 and 100G0 may not be attainable in real atmosphere for 

present climate conditions, the ideia is to show that as the gravity wave amplitude increases 

the dynamics of the MJO is altered as well.  Considering the uncertainty regarding the possi-

ble global warming effect in triggering or enhancing instabilities in the atmosphere, it is not 

unreasonable to think that gravity wave amplitude might reach very high values in the furute, 

especially for the least optimistic scenariois of CO2 emissions.  

Figure 6 clearly shows that, when the initial gravity wave amplitude is high, which is 

believed to occur during periods of intense convection activity embedded in the MJO, the 

gravity mode is able to significantly modulate the energy of the triad. In this case, the energy 

passes back and forth from the triad to the duet. This has several implications for the dynam-

ics of the atmosphere. In fact, gravity waves are ubiquitous in the atmosphere as they are 

known to play an important role in the geostrophic adjustment processes, to trigger new con-
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vection cells and to transfer momentum to the stratosphere, among other phenomena. Thus, 

this back and forth energy transfer from the interacting triad to the gravity mode can be re-

garded as a possible theoretical mechanism for how slow wave modes composing the plane-

tary-scale envelope of the MJO can excite high frequency waves embedded in the MJO and 

vice-versa.  

In the numerical experiment displayed in Fig. 7, the initial amplitude of the gravity 

mode is fixed in 50G0 for clarity of the argument. In this case, the background specific humid-

ity varies from zero (dry case) up to the value of resonance of the duet ER-G with the diurnal 

cycle (79 g/kg). 

For Q0 = 0 (dry case), the triplet is decoupled from the gravity mode and what is seen 

is just the nonlinear triad interaction acting outside the resonance regime. As the parameter Q0 

increases, the triad modes undergo a period-doubling in their energy evolution in time. In Fig. 

7b (upper right panel), the interacting triplet is in resonance, which can be seen through the 

Kelvin (black curve) and Barotropic Rossby (blue curve) wave energies reaching their maxi-

mum modulation magnitude. Nevertheless, the total energy of the triplet (gray curve) starts to 

undergo a little modulation. This modulation of the total triad energy is due to the effect of the 

gravity wave being coupled with the equatorial Rossby mode. The effect of the coupling with 

the equatorial gravity mode through the equatorial Rossby mode can also be noticed by the 

small irregularities in the equatorial Rossby (ER) energy evolution (red curve). In Fig. 7c 

(lower left panel), the duet ER-Gravity is closer to its resonance condition, which implies that 

the gravity mode effect on the triplet is more pronounced. This pronounced effect can be no-

ticed through the stronger modulation of total energy of the triad (gray curve) and through the 

behavior of the ER mode energy. In the last panel (lower right - Fig. 7d), the duet ER-Gravity 

is in resonance through the diurnal frequency, and the gravity wave energy is most efficiently 

exchanged with a member of the triplet, what can be clearly seen in the behavior of total triad 

energy (gray curve). In addition, in the resonance regime of the ER-gravity duet, even the 

Kelvin mode energy starts to feel the effect of the gravity mode, losing the smoothness of its 

energy evolution. 

Therefore, from the numerical results illustrated in Figure 7, one can see that reso-

nance might be the key feature in the atmospheric wave dynamics, as already noticed from the 

results presented in Figure 4 for the sole interacting triad. When the value of Q0 reaches the 

resonance condition of the triad, the nonlinear triad interaction dominates the 4-wave dynam-
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ics. However, as Q0 increases and is in between the two resonances, it is possible to verify a 

mixture of effects in which neither the triad nor the duet dominates the 4-wave dynamics. 

Afterwards, when the parameter Q0 establishes the duet resonance, the energy modulation of 

the triad members is significantly affected by the interaction with the duet. Since no triad is 

isolated in nature, this poses a real challenge for climate research community. In fact, the 

amount of water vapor in the atmosphere is determinant to know what kind of interaction will 

dominate the atmospheric dynamics to a second order approximation (since the hypothesis is 

that in a first order approximation the free linear wave dynamics is supposed to be dominant). 

This has implications for: (i) the prediction of the energy distribution in the atmosphere, (ii) 

the MJO teleconnection pattern evolution in the context of a warmer planet, and (iii) the pre-

diction of the MJO itself. Therefore, it is imperative to understand the mechanisms of feed-

back and maintenance of water vapor in the atmosphere in order to accurately simulate the 

evolution of the moisture field with global warming. Even in the simplistic model used in the 

present work, it is possible to grasp the inherently difficulty involved in the climate change 

projections. 
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Figure 7: Time evolution of the mode energies of the triad in the four-wave dynamics (2.5.2a,b,c,d), for an initial 

gravity mode amplitude of 50G0 and the following values of Q0: a) Q0=0 (upper left), b) Q0= 36.47 (resonance 

value for the triad – upper right), c) Q0=50 (lower left) and d) Q0= 79.44 (resonance value for the duet ER-G, 

lower right). The parameter Q0 is given in g/kg. 

 

 

Fig. 8 shows the same numerical integration of Fig. 7, but with a reverse perspective. 

What is shown in Fig. 8 is how the duet ER-gravity is affected by the triplet. In Fig. 8a (upper 

right panel), as Q0 = 0, the duet interaction between equatorial Rossby and gravity modes is 

not affected by the triad interaction, and the duet energy exchange is identical to that predict-

ed by equations (2.4.17). For Q0 = 36.47g/Kg, Fig. 8b (upper right panel) shows that the triad 

interaction still dominates the ER mode energy evolution, and the interaction with the gravity 

mode remains weak, although small perturbations start to appear in the gravity mode energy 

evolution due to its connection with the ER mode. With the value of Q0 referred to Fig. 8c 

(lower left panel), the duet is closer to its resonance condition with the diurnal cycle, and the 

amplitude of the gravity mode energy modulation becomes more intense, which may yield the 

loss of smoothness of the ER mode energy evolution.  
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Figure 8: Same numerical integration of Fig. 7, but displaying the energy evolution of the duet modes. 

 

The results displayed in Fig. 8 can also be thought of as a mechanism by which large-

scale dynamics can influence high-frequency convection. The ER mode exchanging energy 

with kelvin and Barotropic Rossby modes can excite a gravity mode and transfer energy from 

the triad to this wave mode. Comparing Figs. 7 and 8, one can see that the ER mode in the 

presence of water vapor can transfer energy back and forth from the triad to the gravity mode 

and vice-versa. 

This can be important not only for understanding the MJO dynamics but also for an 

extremely important process in the distribution of energy in the atmosphere called moist geo-

strophic adjustment. Any further discussion of this process is outside the scope of this work 

and will appear in the future suggestions of inquiry. 

Fig. 9 shows the phase space perspective of the numerical results presented in Fig.7, 

illustrating the energy of the equatorial Rossby mode as a function of the Kelvin mode ener-

gy. 
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From this perspective, it is more clear the qualitative change of behavior of the system 

as the water vapor concentration Q0 increases. In the absence of water vapor, the system is 

trapped in a regular oscillation; as water vapor level rises, the oscillation becomes more irreg-

ular.  

 

 

Figure 9: Phase space perspective of the integration displayed in Fig. 7, displaying the energy of Kelvin mode as 

a function if the ER mode energy. 

 

 

Fig. 10 illustrates the results of a numerical integration of the four-wave system for 

another set of wave modes and for the time function of the diurnal cycle of the heat forcing 

being described by a half rectified sine. The modes considered in this integration are: 

Mode 1: k1 = -2; n1 = -1 (Kelvin); 

Mode 2: k2 = 5; n2 = 1 (Equatorial Rossby) 

Mode 3: k3 = k1 + k2; l3 = 2 (barotropic mode); 

Mode 4: k4 = -5; n4 = 3 (equatorial gravity); 

 

As in Fig. 7, the results of the numerical integration of the four-wave system are dis-

played in Fig. 10 for different values of the parameter Q0. However, the choice of the values 

of Q0 is different from Fig. 7 because the selected modes are different, changing the necessary 

value of Q0 to match the resonance condition. The results presented in Fig. 10 essentially 
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show the same qualitative features as those illustrated in Fig. 7. The initial conditions and the 

values of Q0 to match the triad and duet resonances are different although the qualitative be-

havior is the same. This indicates that the choice between half wave rectified sine or fully 

rectified sine for the time dependent function of the convective heating does not affect the 

system in the timeframe of integration used in this work  

 

Figure 10: Similar to Fig. 7, but for another set of modes (see text) and for a diurnal cycle of the heat 

forcing being described by a half rectified sine function. 

 

 

What this chapter has shown is that even with a simple theoretical framework it is pos-

sible to verify the complexity involved in understanding atmospheric dynamics and its evolu-

tion under global warming. Changing only the moisture content has shown to drastically alter 

the dynamics of the toy model. One can argue that the values displayed here are too small, 

however, it is plausible to think that inside an intense convection region the value of the mois-

ture is greater than its climatological equilibrium value as well as the amplitude of the modes.  



46 

 

 

 

3 Chapter 4: CONCLUDING REMARKS 

 

Here we have investigated the dynamics of a single triad interaction involving convec-

tively coupled equatorial Rossby and Kelvin modes and a barotropic Rossby mode. The cou-

pling between the equatorial wave modes and deep convection heating is described in the 

simplest possible setting by adopting the linear wave-cisk formulation in which the heating is 

proportional to the lower-troposphere moisture convergence produced by the waves, with the 

moisture field being prescribed to exhibit the meridional Kelvin mode structure, which is 

compatible with observations. If the diurnal cycle of the moisture field is considered, the triad 

is coupled with a fourth wave-mode, an equatorial inertia-gravity mode, through the linear 

wave interaction mechanism between equatorial Rossby and inertia-gravity modes proposed 

by Raupp and Silva Dias (2010). Overall, the results highlight two important effects of mois-

ture. In the first one, the coupling between the equatorial Rossby and Kelvin wave modes 

with moist convection has shown to be a key feature to allow these equatorial wave types to 

undergo significant nonlinear triad interaction with the barotropic Rossby wave. In fact, the 

coupling with moisture reduces the eigenfrequencies of the equatorial wave modes, allowing 

the possibility of a barotropic Rossby wave to be resonantly coupled with the equatorial 

modes. Moreover, the results show that the moisture content can also influence the period of 

the energy modulations. Regarding the second effect, the coupling of the equatorial Rossby 

mode with the high frequency gravity mode through the diurnal cycle of the heat forcing also 

relies on the moisture content due to the effect of this parameter in controlling the frequency 

mismatch of this duet interaction. When this duo is coupled with the interacting triad through 

the equatorial Rossby mode, the moisture content also plays a relevant role in the dynamics of 

the four-wave system, since it can define which of the two resonances it gets the system closer 

to. In addition, when the gravity mode amplitude is high, which is compatible with an in-

creased moisture content since gravity waves are closely related to deep convection, this cou-

pling between the gravity mode with the interacting triad due to the moisture diurnal variation 

can significantly affect the triad interaction, with the energy being transferred back and forth 
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from the triad to the gravity mode. This can have an important implication to the nonlinear 

moist geostrophic adjustment problem. 

As discussed in Chapter 1, convectively coupled equatorial Rossby and Kelvin modes 

play an important role in the morphology of the planetary-scale envelope associated with the 

MJO. In addition, the barotropic Rossby waves are believed to be the way by which the MJO 

affects the extratropics. Therefore, the reduced model of a single triad interaction involving 

these three wave types has been considered here as a toy model for the MJO activity, with the 

coupling with the high frequency equatorial gravity mode being a simple way to represent the 

effect of the high frequency convective systems embedded in the MJO. Consequently, the 

magnitude of the wave energy modulations in our toy model can be associated with the inten-

sity of the MJO activity. 

In this context, the increased wave amplitude modulations in our toy model in re-

sponse to the moisture increase can suggest that increasing the moisture content of the atmos-

phere might lead to a stronger MJO activity. On the other hand, based on the Clausius-

Clayperon equation, the higher the air temperature the higher the moisture content of the at-

mosphere.Consequently, one of the most direct effect of global warming is the increase in 

water vapor concentration in the troposphere. Therefore, the theoretical results presented here 

can provide a reasonable explanation for the observed increase of the MJO activity during last 

decades (Jones and Carvalho 2006), as well as its further increase foreseen to the remainder of 

this century in a scenario of pursued global warming (Jones and Carvalho 2011). Considering 

the MJO influence on extreme events of precipitation and temperature, the increase of its ac-

tivity may help to explain changes in extreme values of these quantities associated with the 

increase of the global average temperature. 

There is a large amount of uncertainty on how the MJO will respond to global warm-

ing, as well as the extreme climate events that are related to the MJO, such as heavy rainfall, 

and the changes in the hydrological cycle. In this scenario of great uncertainty, this work pro-

vides a direct and easily comprehensible mechanism bridging the gap between a direct re-

sponse to a warmer planet and dynamical effects not easily simulated in GCMs used by IPCC 

projections. 

Although we believe that this work has provided some important results and may help 

to shed some light into a possible mechanism underlying the change in climate variables in a 

warmer planet, there are some limitations in scope and applicability of the model adopted 
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here. First of all, it is not the intention of this work to be a comprehensive theory of the MJO, 

that is, a theory that accurately explains its whole structure and behavior, even though an im-

portant achievement of this work is that it helped understanding the dependency of the MJO 

on the mositure field in a dynamical framework. Second, even as a toy model, other important 

features are not considered here but are widely recognized as playing a key role in MJO sys-

tem; one example is the heating associated with a shallow convection. The second baroclinic 

mode vertical structure needs to be included to represent the diabatic forcing associated with 

the shallow convection.  Khouider et al. (2013) showed that the interaction between equatorial 

wave modes having the first and second baroclinic structures plays a significant role in the 

intraseasonal dynamics. 

Another feature not considered here is the stochastic nature of the climate system. 

Several mathematical models use stochastic dynamics to reproduce the uncertainty that is 

inherently present in the nonlinear climate dynamics. One example is the effect of random-

ness of some variables or even a reduction of the dimension of the system where there are two 

or more distinct time and/or space scales involved (see, for instance, Majda et al., 2019 and 

Djikstra, 2013).  

Finally, other limitation of the present work is the arbitrary nature of our choice of the 

dynamical system components. Other triads and interaction among triads should be consid-

ered in order to more accurately evaluate the evolution of the system. 

Other limitations and critics could be pointed, however, it is our believe that, despite 

the simplicity of the model, its results provide interesting insights to further analysis and con-

tribution to the climate change debate. Some suggestions to ameliorate the model accuracy are 

presented in the next chapter. 
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4 Chapter 5: FUTURE WORK AND SUGGESTION 

 

Bearing in mind all the limitations of the model adopted in this work we proposed in 

this short chapter some studies necessary to improve our theoretical understanding of the 

MJO as a complex dynamical system. 

a) To study the interaction of Equatorial Rossby mode with smaller scale gravity 

modes by considering a zonal structure of the diurnal cycle of convective heating that could 

help to understand the interaction between mesoscale gravity waves with large-scale Rossby 

waves. Also, the interaction of higher vertical modes of the system with the first baroclinic 

mode vertical structure associated with deep convection heating studied here, for instance, the 

interaction between first and second baroclinic modes. These interactions of the first baroclin-

ic mode with higher vertical modes have shown to be important to accurately describe the 

whole MJO life cycle. 

b) Applying the theoretical framework elaborated in this work to study the moist 

geostrophic adjustment processes. 

c) To study the triad interaction with a forcing in one of its modes. This forcing could 

represent the projection onto the particular eigenmode of the radiative forcing associated with 

increased greenhouse gas concentration in the atmosphere. An important case that must be 

considered is the stratospheric cooling, which affects the gravest vertical modes in the tropo-

sphere. 

d) To understand the effects of a forcing on the gravity mode on the triplet dynamics. 

Such forcing could mimic, for instance, the effect of global warming in enhancing deep con-

vection activity, since gravity waves are the modes directly responsible for moist convection 

processes. This effect of enhancing convection by increasing the equilibrium value of the 

moisture content on the dynamics of our toy model has been analyzed here by artificially 

changing the gravity mode amplitude.  

e) Using a stochastic forcing representing high frequency dynamics in the triad model 

to help to better understand how the variability of the MJO activity may change under global 

warming. For completeness, a study in this direction should use not only a white noise pro-

cess but also a non-gaussian process.  
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f) An important feature missing in this work is the interaction with a more realistic 

basic state of the dynamical variables and the effect of the global warming over the basic 

state; for instance, a realistic atmospheric circulation pattern or a realistic spatial distribution 

of ocean surface temperature.  
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