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Resumo

Neste trabalho investigou-se a possibilidade de ondas acústicas serem instáveis em

relação à perturbações nos modos gravidade-inerciais, através de interações triádicas não-

lineares no contexto do modelos não-hidrosatático raso. Foi considerado uma expansão de

Galerkin, altamente truncada, das perturbações em torno de um campo básico isotérmico,

hidrostático e em repouso. A expansão de Galerkin foi feita em relação às autofunções do

problema linearizado. Para um tripleto isolado, ficou demonstrado que uma onda acústica

não consegue amplificar as perturbações de um par de ondas gravidade-inerciais. Isso

ocorre devido ao alto mismatch das autofrequências do tripleto de ondas. Por outro lado,

a análise da dinâmica de dois tripletos acoplados por um único modo demonstrou que um

modo gravidade-inercial não-hidrostático (acústico), participando de um tripleto quase-

ressonate com dois modos acústicos (um modo gravidade-inercial e um modo acústico) pode

ser instável em relação à pequenas perturbações associadas a um par de ondas gravidade-

inerciais que estão em balanço hidrostático. Esta instabilidade linear implica em uma

troca de energia inter-triádica significativa, se a não-linearidade associada ao segundo tri-

pleto, composto por dois modos gravidade-inearciais hidrostáticos, for reconsiderada. As

implicações desses resultados para o ajuste hidrostático não-linear são discutidas.





Abstract

Here we have investigated the possibility of an inertio-acoustic wave-mode to be unsta-

ble with regard to gravity mode perturbations through nonlinear triad interactions in the

context of a shallow nonhydrostatic model. We have considered highly truncated Galerkin

expansions of the perturbations around a resting, hydrostatic and isothermal background

state in terms of the eigensolutions of the linear problem. For a single interacting wave

triplet, we have shown that an acoustic mode cannot amplify a pair of inertio-gravity per-

turbations due to the high mismatch among the eigenfrequencies of the three interacting

wave-modes, which resquires an unrealistically high amplitude of the acoustic mode in

order for pump wave instability to occur. In contrast, it has been demonstrated by analy-

zing the dynamics of two triads coupled by a single mode that a non-hydrostatic gravity

wave-mode participating of a nearly resonant interaction with two acoustic modes can be

unstable to small amplitude perturbations associated with a pair of two hydrostatically

balanced inertio-gravity wave-modes. This linear instability yields significant inter-triad

energy exchanges if the nonlinearity associated with the second triplet containing the

two hydrostatically balanced inertio-gravity modes is restored. Therefore, this inter-triad

energy exchanges lead the acoustic modes to yield significant energy modulations in hy-

drostatic inertio-gravity wave modes. The implications of the results for the nonlinear

hydrostatic adjustment problem are discussed.
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Chapter 1

Introduction

With the advent of high resolution atmospheric models, there has been a renewed

interest in the study of the normal modes of nonhydrostatic atmospheric models. Kasahara

and Qian (2000) and Qian and Kasahara (2003) studied the linear normal mode function

theory of the shallow nonhydrostatic model (White et al., 2005) in the contexts of spherical

and the beta-plane geometries, respectively. Their theory has been augmented with the

account of the nontraditional Coriolis terms (Kasahara, 2003b,a). The linear normal mode

function theory has also been presented by Kasahara (2004) for the full deep nonhydrostatic

case, as well as by Kasahara and Gary (2006) for the Boussinesq system in which acoustic

modes are absent. Nevertheless, as the governing equations of the atmospheric dynamics

are nonlinear, a more accurate account of the normal mode theory should also include the

effect of the nonlinearity on the waves’ dynamics.

Atmospheric normal mode function theory has long received considerable research ef-

fort due to the central role of normal modes in theoretical toy models. These models are

designed to elucidate mechanisms of the atmospheric dynamics that are not distinguisha-

ble in a full general circulation models (AGCMs). Also, there are practical applications

of normal modes in data assimilation (Žagar et al., 2004) and initialization of numerical

weather prediction models (Baer and Tribbia, 1977; Machenhauer, 1977; Leith, 1980). A

historical account of research on normal modes of atmospheres over spheres can be found

in Kasahara (2004). In addition, the normal mode functions of three-dimensional primi-

tive equations in spherical coordinates can be utilized in diagnostic analysis of AGCM’s

outputs by projecting global circulation dynamical fields onto these eigenfunctions (see,

for instance, Kasahara and Puri, 1981; Žagar et al., 2015).

The normal modes of a dynamical system represent its free small amplitude oscillati-
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ons around a reference steady-state. They are the eigensolutions of the linearized version

of the correspondent partial differential equations. For the atmosphere, this reference

steady-state is usually defined as with no motion and characterized by a stably stratified

atmosphere, since in this case the leading-order wave actions by which the orthogona-

lity relations hold, are positive definite integrals, represented by either pseudoenergy or

pseudomomentum (see, Shepherd, 1990; Vallis, 2006), and consequently the eigensolutions

represent purely stable wave motions. In this context, the effect of nonlinearity is to break

down the independence of the normal modes, allowing their energy to be exchanged within

triads of resonant eigenmodes (see Raupp et al., 2008, and references therein).

Due to the extensive use of global numerical models with coarse resolutions until the ni-

neties, the research effort on atmospheric normal mode functions has mostly focused on glo-

bal hydrostatic primitive equation models (Longuet-Higgins, 1968; Kasahara, 1976, 1977;

Kasahara, 1978), as well as their equatorial beta-plane (Matsuno, 1966; Lindzen, 1967;

Silva Dias et al., 1983; DeMaria, 1985; Raupp et al., 2008; Raupp and Silva Dias, 2009)

and quasi-geostrophic (Vallis 2006; Pedlosky 1987 and references therein) approximations.

Nevertheless, with the increasing utilization of high-resolution numerical models during the

last decades, the interest in normal mode function theory of global non-hydrostatic models

has been renewed. Kasahara and Qian (2000) studied the linear theory of non-hydrostatic

normal modes of a shallow global non-hydrostatic model in spherical coordinates, while

Qian and Kasahara (2003) performed a similar analysis for the equatorial and mid-latitude

beta-planes. The shallow non-hydrostatic model adopted in these studies considers the tra-

ditional approximation (Phillips, 1973) and neglects all the apparent acceleration terms

involving the vertical velocity in the horizontal momentum equations, as well as all the

apparent acceleration terms of the vertical momentum equation.

In this context, Kasahara (2003b,a) augmented the linear theory of non-hydrostatic

normal modes developed in Kasahara and Qian (2000) and Qian and Kasahara (2003)

by accounting for the nontraditional Coriolis terms proportional to the cosine of latitude

in the momentum equations in the context of the tangent plane geometry. He analyzed

the role of these nontraditional terms in the dispersion relation of inertio-gravity (IG)

and inertio-acoustic (IA) modes. Kasahara (2004) computed the normal modes of the full

deep non-hydrostatic global model, including all the curvature and nontraditional Coriolis

terms of the momentum conservation in spherical coordinates, along with not performing
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the traditional approximation. Unlike the hydrostatic primitive equations and the shal-

low non-hydrostatic model, in the deep non-hydrostatic model in spherical coordinates, the

linearized equations around a resting basic state are no longer separable into two simultane-

ous eigenvalue problems representing the vertical and horizontal structures of the normal

modes. Therefore, Kasahara (2004) proposed a numerical procedure involving a finite-

difference discretization in the vertical direction and the meridional eigenvalue problem is

solved for each vertical level. He then compared the solutions of the deep non-hydrostatic

model with those of the shallow non-hydrostatic model obtained by Kasahara and Qian

(2000).

Recently, Teruya (2014) extended the work of Kasahara and Qian (2000) by analyzing

both linear and weakly nonlinear energetics of inertia-gravity and inertia-acoustic mo-

des. The former analyzed the dynamics of a single resonant triad interaction involving an

inertia-gravity wave and two inertia-acoustic modes. In this kind of resonant interaction,

an inertia-gravity wave acts as a catalyst mode for the energy exchanges between the two

inertia-acoustic waves. So the amplitude of the inertia-gravity wave is quasi-stationary,

but it enables the interaction between the two inertia-acoustic waves and controls both the

interaction period and the impacts of the energy modulations on the perturbed dynamical

field variables. Therefore, comparing this finding with previous investigations on the non-

linear atmospheric wave theory in the hydrostatic context (e.g., Vanneste and Vial, 1994;

Raupp et al., 2008; Ripa, 1983a,b; Domaracki and Loesch, 1977; Loesch and Deininger,

1979; Duffy, 1974), it is clear that the role of an inertia-gravity mode in a resonant interac-

tion involving inertia-acoustic modes is similar to the role of a Rossby mode in a resonant

interaction involving two inertio-gravity waves.

This thesis is a follow up of the work of Teruya (2014) by further investigating the

nonlinear dynamics of the shallow nonhydrostatic equations. In particular, we are interes-

ted here in investigating the possibility of a resonant triad involving inertia-acoustic and

nonhydrostatic inertia-gravity waves to be unstable with regard to interacting triads (not

necessarily resonant) of inertia-gravity modes. A motivation for this analysis stems from

recent findings in the nonlinear wave literature pointing out that even though in a single

interacting wave triad the resonance relation among the modes’ eigenfrequencies is crucial

for significant energy exchanges to occur in the limit of weak nonlinearity. If one relaxes

the resonance assumption of weak nonlinearity to take into account off-resonant wave tri-



20 Chapter 1. Introduction

ads, the mismatch among the wave frequencies within interacting triads might be relevant

for the energy flow throughout the whole modal space. Bustamante et al. (2014) showed in

a reduced dynamical system of a resonant triad (RT) and a nonresonant (NRT) triad cou-

pled by two modes (i.e., a four-wave system) that, for moderate values of wave amplitudes,

the energy leakage from the RT toward the NRT increases as the nonlinear frequency of

amplitude (energy) modulations of the RT approaches the frequency mismatch among the

wave eigenfrequencies of the NRT. The authors have labeled this synchronization between

the nonlinear frequency and linear mismatch frequency between different interacting triads

as precession resonance. Bustamante et al. (2014) also demonstrated the critical role of

precession resonance mechanism for increasing the efficiency of the energy flow throughout

the whole system of several connected triads. Another mechanism that yields significant

energy transfers throughout the whole modal space in a diversity of wave problems is the

modulational instability (Connaughton et al., 2010). Thuburn (2011) points out that in-

ternal acoustic waves and internal inertio-gravity waves are energetically weak, and are

relatively fast processes compared to the energetically dominant processes observed in the

atmosphere. Furthermore, since these waves impose a huge constraint in the time step

in explicit time schemes Pielke (2002), one might want to damp/distort their propagation

with semi-implicit time schemes to avoid the time step constraint present in explicit time

schemes (Giraldo et al., 2010). There are other ways to avoid the time step constraint of

explicit time schemes, for example, Daley (1988) proposed a filter for acoustic modes based

on normal mode expansion, in the same spirit of the method proposed by Tribbia (1979) in

the hydrostatic context to filter out inertio-gravity waves, using split-explicit time schemes

(Klemp et al., 2007; Klemp et al., 2018), using approximations to filter out acoustic modes

(Davies et al., 2003; Klein, 2009).

According to Thuburn (2011):

” Atmospheric dynamics is complex and involves a wide range of space and time

scales. The energetically dominant dynamics is slow and close to balance, and

it may be wavelike, vortical, or strongly nonlinear. Fast acoustic and inertio-

gravity waves represent departures from balance, but are also the mechanism

by which the atmosphere continuously adjusts towards balance. Nonlinearity

implies interac- tions between the different space and time scales. Particularly

important are energy and potential enstrophy transfers across scales; for any
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practical global atmospheric model there will inevitably be important dynamics

occurring near the resolution limit. The need to capture all of these processes

with sufficient accuracy make numerical modeling of the atmosphere one of the

most challenging branches of computational fluid dynamics.”

So, it is crucial to understand the role of acoustic and inertia-gravity waves with a linear

and nonlinear perspective.

Our analysis of a highly truncated spectral model of the shallow nonhydrostatic equati-

ons demonstrates that an inertia-gravity mode, participating of a resonant triad interaction

with two inertia-acoustic modes, can be unstable to small amplitude perturbations if that

inertia-gravity mode is coupled with two lower frequency inertio-gravity modes. Since the

high frequency inertio-gravity wave is more nonhydrostatic than low frenquency inertio-

gravity waves, our results suggest that ultra-high frequency acoustic modes can potentially

yield amplitude (energy) modulations in hydrostatically balanced inertio-gravity waves th-

rough inter-triad energy exchanges. Therefore, the present theoretical description suggests

that acoustic modes excited by localized and explosive heating associated with convective

storms might play an important role in both hydrostatic and geostrophic adjustments, as

will be discussed in Chapter 5.

This thesis organized as follows. In Chapter 2 we review the Hamiltonian formalism

for fluids. Then, in Chapter 3 we use the Hamiltonian formalism to derive the equations

of motion and the integrals of motion of the nonhydrostatic shallow model. The spec-

tral representation of the solution in terms of the eigenmodes of the linearized problem

is also presented in the latter chapter. In Chapter 4 we present the general properties

of the interaction coefficients in an arbitrary interacting wave triad as a consequence of

total pseudo-energy conservation and the reduced dynamics of one wave triad and two

triads coupled by a single mode to investigate the possibility of acoustic modes to excite

hydrostatic inertio-gravity waves. The main conclusions are discussed in Section 5.
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Chapter 2

Hamiltonian Formalism

One of the main advantages of using the Hamiltonian formalism is that it provides a

systematic procedure to find out the integrals of motion of a dynamical system (Salmon,

1998). It is also possible to figure out which integrals of motion as kept after applying

some approximation on a model (Shepherd, 1990; Morrison, 1998). A handful of geophy-

sical fluid dynamics models can be described using the Hamiltonian formalism (Shepherd,

1990; Scinocca and Shepherd, 1992; Ripa et al., 2003). Often, to characterize the mo-

tion of a geophysical fluid, one should use the Hamiltonian formalism in its symplectic

representation (Shepherd, 1990). A few applications of the Hamiltonian formalism will be

worked out in the next section. These examples will be used to define some mathematical

notations and to illustrate the advantages of using the Hamiltonian formalism in finite and

infinite dimension systems.

2.1 Finite dimensional Hamiltonian systems

AN -dimensional canonical Hamiltonian system is defined by a phase space {(qi, pi)}i=1,...,N ,

where qi’s are generalized coordinates and pi’s are generalized momentum, and a Hamil-

tonian function H(qi, pi, t). The canonical Hamilton equations fully describe the system’s

dynamical evolution (Landau and Lifshitz, 1976; Goldstein, 1980)

dqi
dt

=
∂H

∂pi
, (2.1a)

dpi
dt

= −∂H
∂qi

. (2.1b)

In the canonical representation, every integral of motion is associated with a symmetry

in the Hamiltonian function. For example, if the Hamiltonian is time-independent (i.e.,
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∂H/∂t = 0), then

dH

dt
=
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

=

(
−dpi
dt

)
dqi
dt

+

(
dqi
dt

)
dpi
dt

= 0. (2.2)

Thus, if the Hamiltonian function has a translational symmetry in time, then it is a integral

of motion of the system.

Example Consider an object with mass m attached to a massless spring with spring

constant k (i.e. a harmonic oscillator). The Lagrangian L = L(x, ẋ) of the system is

L = K − V , where K is the kinetic energy and V is the potential energy of the system

(Landau and Lifshitz, 1976). Thus, the Lagrangian of the harmonic oscillator is

L(x, ẋ) =
mẋ2

2
− kx2

2
(2.3)

The Hamiltonian functions is H = H(x, p), where p ≡ ∂L/∂ẋ = mẋ is the generalized

momentum associated to the generalized coordinate x. The Hamiltonian function of the

system can be obtained using the Legendre transform (Landau and Lifshitz, 1976),

H(x, p) = pẋ− L(x, ẋ)

= pẋ−
(
p2

2m
− kx2

2

)
=

p2

2m
+
kx2

2
. (2.4)

Since the Hamiltonian function is time-independent, then, without glancing at the equati-

ons of motion, we know that H is an integral of motion of the system. Using Hamilton’s

equations gives us the time evolution equation’s

∂H

∂q
= ṗ⇒ ∂H

∂x
= kx = ṗ, (2.5a)

∂H

∂p
= q̇ ⇒ H

∂p
= ẋ =

p

m
, (2.5b)

eliminating p,

ẍ =
k

m
x (2.6)

which is the well-known harmonic oscillator equation. 2
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Hamilton’s equations can also be cast using the symplectic notation Hamiltoniano(Shepherd,

1990; Goldstein, 1980)

dui
dt

= Jij
∂H(u)

∂uj
(2.7)

where u is the state vector of the dynamical system, Jij is a skew-symmetric tensor that

also satisfies the Jacobi’s identity

εijkJim
∂Jjk
∂um

= 0 (2.8)

where εijk is the Levi-Civita symbol.

For the canonical representation we have,

u = (q1, . . . , qN , p1, . . . , pN)T (2.9a)

J =

 0N IN

−IN 0N

 (2.9b)

where 0N a N by N zero matrix and IN is the N by N identity matrix.

The symplectic notation can also be written in terms of a Poisson bracket [·, ·]. The

Poisson bracket is defined as

[F,G] =
∂F

∂ui
Jij

∂G

∂uj
, (2.10)

where F (u) and G(u) are state functions. The Poisson bracket maps two state functions

to another state function. It is also a bilinear, skew-symmetric mapping . The canonical

Poisson brackets are,

[F,G] =
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (2.11)

With the bracket notation, the equations of motions are written as

dF

dt
=
∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi
dt

=
∂F

∂qi

∂H

∂pi
+
∂F

∂pi

(
−∂H
∂qi

)
= [F,H]. (2.12)

Also, the Jacobi identity in bracket notation is

[F, [G,H]] + [H, [F,G]] + [G, [H,F ]] = 0. (2.13)
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It is trivial, yet pedestrian, to show that the Canonical Poisson brackets satisfy the Jacobi

identity. Notice that ker[J ] = 0.

The noncanonical Hamiltonian formalism relies on the fact that one can define a bracket

different from the canonical Poisson bracket, but that is also bilinear, skew-symmetric, and

satisfy the Jacobi identity. The main difference is that in the noncanonical case ker[J ] 6= 0.

This property results in a new class of conservative quantities, the Casimir invariant. A

state function C that commutes with any state function is called a Casimir function

[C,G] = 0 for any G = G(u). (2.14)

Notice that the commutator of the Casimir with the Hamiltonian is

[C,H] = −[H,C] =
∂C

∂ui
Jij
∂H

∂uj
= −∂H

∂ui
Jij

∂C

∂uj
= 0⇔ Jij

∂C

∂uj
= 0 (2.15)

Example The motion of a rigid body is described by the Euler’s rigid body equations

(Goldstein, 1980; Landau and Lifshitz, 1976)

Π̇1 =
I2 − I3

I2I3

Π2Π3 (2.16a)

Π̇2 =
I3 − I1

I3I1

Π3Π1 (2.16b)

Π̇3 =
I1 − I2

I1I2

Π1Π2 (2.16c)

where Πi = IiΩi are the angular momentum associated with the body’s principal axes of

inertia and Ii’s are the inertia moments. Notice that the rigid body’s motion is described

by just three differential equations. With the canonical formalism the state vector must

be u = (x, y, z, φ, θ, ψ; px, py, pz, pφ, pθ, pψ)T . Where x, y e z are cartesian coordinates, φ,

θ e ψ are the Euler angles and px, py, pz, pφ, pθ, pψ are their respective momentum. So, the

canonical Hamiltonian formalism we will end up with a set of six differential equations.

In the noncanonical formalism (Shepherd, 1990), we have

u = (Π1,Π2,Π3)T (2.17a)

H(Π) =
1

2

(
Π2

1

I1

+
Π2

2

I2

+
Π3

1

I3

)
(2.17b)

J =


0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

 (2.17c)
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The rigid body noncanonical Poisson bracket is (Marsden and Ratiu, 1999)

[F,G](Π) = −Π · (∇F ×∇G) (2.18)

where ∇ = (∂Π1 , ∂Π2 , ∂Π3). Explicitly, the noncanonical Poisson bracket yields,

[F,H] = −(Π1,Π2,Π3) ·
(

Π3

I3

∂F

∂Π2

− Π2

I2

∂F

∂Π3

,−Π3

I3

∂F

∂Π1

+
Π1

I1

∂F

∂Π3

,
Π2

I2

∂F

∂Π1

− Π1

I1

∂F

∂Π2

)
.

(2.19a)

Taking F = Π1, F = Π2 and F = Π3 results in

[Π1, H] = −Π2Π3

I2I3

(I3 − I2) = Π̇1 (2.20a)

[Π2, H] = −Π1Π3

I1I3

(I1 − I3) = Π̇2 (2.20b)

[Π3, H] = −Π1Π2

I1I2

(I2 − I1) = Π̇3 (2.20c)

which are exactly the Euler rigid body equations. Notice that the total angular momentum

is a Casimir function of the system C = 1/2(Π2
1 +Π2

2 +Π2
3). Since ∇C = (Π1,Π2,Π3) = Π,

then

dC

dt
= [C,F ]

= −Π · (∇C ×∇F )

= −Π · (Π×∇F )

= 0 (2.21)

Thus C commutes with any state function F . In particular, if we take F = H, it is clear

that the Casimir function C is also an integral of motion 2

2.2 Infinite Dimensional Hamiltonian Systems

Some fluid dynamics models can be described using the Hamiltonian formalism (Shepherd,

1990; Scinocca and Shepherd, 1992; Ripa et al., 2003). For fluids, the symplectic repre-

sentation is the same as in (2.7), but instead of partial derivatives, we must use variatio-

nal/functional derivatives,

ut = J
δH

δu
(2.22)
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where u is a column vector with a function in each entry, ut is the element-wise time

derivative of u, H is the Hamiltonian functional, δH /δu is a column vector where each

element is the functional derivative of the Hamiltonian functional by each element each

element of u and J is a bilinear skew-symmetric mapping (u,Jv) = −(Ju,v) and also

satisfy the Jacobi identity (2.13), where (·, ·) is the inner product of the space {u}. Now

let’s define the function derivative (Greiner and Reinhardt, 1996).

Definition Let M = {φ(x) : x ∈ C} be a normed vector space. A functional F [φ] is a

mapping F : M → C. The variation of a functional F [φ] is defined as

δF [φ] = F [φ+ δφ]− F [φ] (2.23)

:=

∫
δF [φ]

δφ(x)
δφ(x)dx (2.24)

2

Just like in the discrete case, we can define the Casimir functionals C . Analogous to

(2.15), the Casimir of an infinite dimensional noncanonical Hamiltonian system is defined

as

J
δC

δu
= 0. (2.25)

For an energy-conserving system, with the Casimir functional, it is possible to define an

integral of motion called pseudo-energy. The pseudo-energy is just an integral of motion,

but it is also quadratic to the lowest order. So, the pseudo-energy is positive-definite to

the lowest order. The latter property is useful to analyze the stability of the system. The

pseudo-energy A is defined as follows

A (u) = H (u)−H (U) + C (u)− C (U), (2.26)

where U is a stationary state of the system. Since U is stationary (i.e. ut(u = U) = 0),

then

J
δH

δu

∣∣∣∣
u=U

= ut|u=U = 0⇒ δH

δu

∣∣∣∣
u=U

= − δC

δu

∣∣∣∣
u=U

, (2.27)

so, the variation of A is

δA = A |u=U +

(
δA

δu

∣∣∣∣
u=U

, δu

)
+O(δu2), (2.28)

= 0 +

(
δH

δu

∣∣∣∣
u=U

+
δC

δu

∣∣∣∣
u=U

, δu

)
+O(δu2), (2.29)

= O(δu2). (2.30)
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Thus, the pseudo-energy is indeed quadratic to the lowest order.

Now we will apply the Hamiltonian formalism to the well-known rotating shallow water

model(Shepherd, 1990).

Example The governing equations of a shallow, homogeneous fluid in a rotating reference

frame, with a constant vertical angular speed f/2, are

∂v

∂t
+ (v ·∇)v + f ẑ × v = −g∇h (2.31a)

∂h

∂t
+ ∇ · (hv) = 0 (2.31b)

where v(x, y, t) = (u(x, y, t), v(x, y, t)) is the horizontal velocity, h(x, y, t) is the fluid depth,

g is the gravity local acceleration, ẑ is the vertical unit vector and the operator ∇ =

(∂/∂x, ∂/∂y). The Hamiltonian system is defined by a state vector is u = (v, h)T and the

Hamiltonian functional

H (v, h) =
1

2

∫∫
(h|v|2 + gh2)dxdy, (2.32)

and the operator J is defined as

J =



0 q −
∂

∂x

−q 0 −
∂

∂y

−
∂

∂x
−
∂

∂y
0


(2.33)

where q is the potential vorticity

q ≡ (f + ẑ ·∇× v)

h
≡ ω

h
. (2.34)

The Casimir functional C in an infinite-dimensional dynamical system satisfy the fol-

lowing equation (Shepherd, 1990)

J
δC

∂u
= 0. (2.35)
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The Casimir functional of the rotating shallow water model is

C =

∫∫
hC(q)dxdy, (2.36)

where C(q) is a function of q. Notice that the mass conservation and the circulation

theorem are just particular cases of the general Casimir functional. Letting C(q) = 1 and

C(q) = q yields the mass conservation and circulation theorem, respectively. Let verify

that C is the Casimir functional of the system. The variation of C is

δC =

∫∫
(hC ′(q)δq + C(q)δh)dxdy. (2.37)

Since q = ω/h, we have

δq =
hδω − ωδh

h2
(2.38)

with the two equations above, it is straightforward to show that the variation of C is

δC =

∫∫ [
∂C ′(q)

∂x
δv − ∂C ′(q)

∂y
δh+

(ω
h
C ′(q) + C(q)

)
δh

]
dxdy. (2.39)

Thus,

δC

δv
=
∂C ′(q)

∂x
, (2.40a)

δC

δu
= −∂C

′(q)

∂y
, (2.40b)

δC

δh
=
ω

h
C ′(q) + C(q). (2.40c)

Finally, we show that C satisfy equation (2.35)
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J
δC

δu
=



0 q −
∂

∂x

−q 0 −
∂

∂y

−
∂

∂x
−
∂

∂y
0





δC

δu

δC

δv

δC

δh



=



q
δC

δv
−

∂

∂x

δC

δh

−q
δC

δu
−

∂

∂y

δC

δh

−
∂

∂x

δC

δu
−

∂

∂y

δC

δv



=


0

0

0


2

2.3 Chapter Summary

The material in this chapter is entirely a review and no claims to originality are made.
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Chapter 3

Governing Equations and Normal Modes

The model adopted here is the so-called shallow global non-hydrostatic model (White

et al., 2005). This model can be obtained from the full Euler equations in a uniformly

rotating frame and spherical-oblate coordinate system by approximating the geopotential

surfaces by spheres and adopting some approximations that result from classical scale-

analysis for large-scale motions in the atmosphere. These approximations include: (i)

neglecting the apparent acceleration terms proportional to the vertical velocity in the ho-

rizontal momentum equations, including both those associated with the curvature of the

coordinate system and the Coriolis term proportional to the cosine of latitude in the zo-

nal momentum equation, and (ii) disregarding all the apparent acceleration terms in the

vertical momentum equation. Furthermore, the approximation of a shallow atmosphere

assumes that its thickness is very small compared to the Earth’s radius, which is regar-

ded as a constant. The shallow non-hydrostatic model has a noncanonical Hamiltonian

strutucture. In order to employ that formalism we need:

• A function space H = {u} with an inner product (·, ·) : H ×H → R;

• A Hamiltonian functional H : H → R;

• A bilinear, skew-symmetric mapping J : (u,Jv) 7→ (−Ju, v) that also satisfy the

Jacobi identity (2.13).

• A set of equations that describe the dynamical evolution of the system,

ut = J
δH

δu
. (3.1)

One of the main advantages of using the Hamiltonian formalism is that one can em-

ploy Noether’s theorem to determine the system’s integrals of motion systematically. For
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example, given that the Hamiltonian functional has a translational time symmetry, a trans-

lational space symmetry or a particle relabelling symmetry, then Noether’s theorem ensures

that the energy, momentum and potential vorticity are integrals of motion of the system,

respectively.

The Hamiltonian structure of the nonhydrostatic primitive equations is defined as fol-

lows (Morrison, 1998; Shepherd, 1990):

u = (~v, ρ, η)T , (3.2)

where u is the state vector, ~v, ρ and η are the velocity field, density and entropy, respec-

tively. The Jacobian operator is (Shepherd, 1990):

J =



0
1

ρ
ω3 −1

ρ
ω2 −∂x

1

ρ
ηx

−1

ρ
ω3 0

1

ρ
ω1 −∂y

1

ρ
ηy

1

ρ
ω2 −1

ρ
ω1 0 −∂z

1

ρ
ηz

∂x ∂y ∂z 0 0

−1

ρ
ηx −1

ρ
ηy −

1

ρ
ηz 0 0


(3.3)

where ω = f ẑ + ∇ × v is the potential vorticity. Finally, the Hamiltonian functional of

the model is

H =

∫∫∫ {
1

2
ρ|~v|2 + U(ρ, η) + ρgz

}
dxdydz (3.4)

where U = U(ρ, η) = ρcvT is the internal energy of an ideal gas and ρgz is the gravity

potential. Let’s calculate the variational derivatives of the Hamiltonian (3.4). First, notice

that

δU = cvTδρ+ cvρδT, (3.5)

From classical thermodynamics (Euler equation),

cvδT = Tδη +
RT

ρ
δρ, (3.6)
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thus,

δU = cvTδρ+ cvρ

(
T

cv
δη +

RT

cvρ
δρ

)
(3.7)

= cpTδρ+ ρTδη (3.8)

=

(
U +

p

ρ

)
δρ+ ρTδη, (3.9)

where we used that the enthalpy is H = cpT ≡ U + p/ρ. So, the variational derivatives

that we need are

δH

δ~v
= ρ~v, (3.10a)

δH

δρ
=

1

2
|~v|2 + gz + U + p/ρ, (3.10b)

δH

δη
= ρT. (3.10c)

Now we will calculate the pseudo-energy of the model. The Casimir of the model is

Kuroda (1990b,a):

C =

∫∫∫
ρC(η, q)dV (3.11)

and the variational derivatives of the Casimir are (Shepherd, 1990)

δC

δ~v
= ∇× (Cq∇η) (3.12a)

δC

δρ
= C − qCq (3.12b)

δC

δη
= ρCη −∇ · (Cqω) (3.12c)

Now, let’s consider a resting, hydrostatic basic state,

~v = 0, (3.13a)

η = η0(z), (3.13b)

ρ = ρ0(z), (3.13c)

dp0

dz
= −ρ0g. (3.13d)

Substituting (3.13) into (3.12), one can show that the Casimir for this basic state is

(Shepherd, 1993):

C(η0) = −gz − U(η0, ρ0)− p0

ρ0

(3.14)
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Andrews (1981) showed that the system’s variables are constant along equipotential fields.

Thus, it is convenient to define the basic state functions as functions of the isentropic

surface η0

ρ0(~x) = ρ̃(η0) (3.15a)

p0(~x) = p̃(η0) (3.15b)

T0(~x) = T̃ (η0) (3.15c)

z = z̃(η0) (3.15d)

With these variables redefinition, the Casimir becomes

C(η) = −gz̃(η)− U(η, ρ̃(η))− p̃(η)

ρ̃(η)
. (3.16)

Using (2.26) shows that the expression of the pseudo-energy is

A (u) = H (u)−H (U) + C (u)− C (U),

=

∫∫∫
dV

{
1

2
ρ|~v|2 + (ρ− ρ0)gz + ρU(η, ρ)

− ρ0U(η0, ρ0) + ρC(η)− ρ0C(ρ0)

}
.

Notice that the kinetic part of A is already quadratic to the lowest order. Let’s show that

the remaining terms are also quadratic to the lowest order.

Substituting (3.16) in the available potential energy expression (i.e. non-kinetic part

of the pseudo-energy)(Shepherd, 1993):

APE =

∫∫∫
dV {(ρ− ρ0)gz + ρU(η, ρ)− ρ0U(η0, ρ0) + ρC(η)− ρ0C(η0)}

=

∫∫∫
dV

{
(ρ− ρ0)gz + ρU(η, ρ)− ρ0U(η0, ρ0)

− ρgz̃(η)− ρU(η, ρ̃(η))− p̃(η)

ρ̃(η)
+ ρ0gz̃(η0) + ρ0U(η0, ρ̃(η0)) + ρ0

p̃(η0)

ρ̃(η0)

}
=

∫∫∫
dV

{
ρgz̃(η0)− ρgz̃(η) + ρU(η, ρ)− ρU(η, ρ̃(η))− ρp̃(η)

ρ̃(η)
+ p0

}
(3.17)

Let’s consider the available potential energy per mass unity, i.e., APE → APE/ρ:

APE =

∫∫∫
dV

{
gz̃(η0)− gz̃(η) + U(η, ρ)− U(η, ρ̃(η))− p̃(η)

ρ̃(η)
+
p0

ρ

}
(3.18)

Let H = H(η, p) be the enthalpy, thus

dH =

(
∂H

∂η

)
p

dη +

(
∂H

∂p

)
η

dp = Tdη − ρ−1dp⇒ Tdη = dH + ρ−1dp. (3.19)
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So,

T̃ ′(η0) = H̃ ′(η0, p̃(η0))− ρ̃−1(η0)p̃′(η0) = H̃ ′(η0, p̃(η0)) + gz̃(η0). (3.20)

Integrating the last equation,∫ η

η0

T̃ (η′)dη′ = H(η, p̃(η))−H(η0, p̃(η0)) + gz̃(η)− gz̃(η0). (3.21)

From classical thermodynamics,

U = H − pρ−1 (3.22)

Plugging (3.21) and (3.22) in (3.18) results in

APE =

∫∫∫
V

dV

(
H(η, p)−H(η, p0)− p− p0

ρ
+H(η, p0)−H(η0, p0)−

∫ η

η0

T̃ (η′)dη′
)

(3.23a)

= Π1 + Π2 (3.23b)

where Π1 and Π2 are defined as

Π1 =

∫∫∫
V

dV

(
H(η, p)−H(η, p0)− p− p0

ρ

)
(3.24a)

Π2 =

∫∫∫
V

dV

(
H(η, p0)−H(η0, p0)−

∫ η

η0

T̃ (η′)dη′
)

(3.24b)

For an ideal gas, we have

ρ−1 = κcpe
η/cpp−(1−κ) (3.25a)

κ = R/cp (3.25b)

η = cp log θ (3.25c)

θ = T
pref

p

κ

(3.25d)

H = cpT = eη/cppκcp (3.25e)

where R is the universal gas constant, cp is the specific heat at constant pressure, θ is the

potential temperature and we will take the reference pressure as pref = 1. So, for an ideal

gas the expressions for Π1 e Π2 are (Andrews, 1981)

Π1 =

∫∫∫
V

dV cpe
η/cppκ0f(p/p0) (3.26a)

Π2 =

∫∫∫
V

dV cpT0h(θ/θ0) (3.26b)

f(x) = (1− κ)xκ + κx−(1−κ) − 1 (3.26c)

h(x) = x− 1− log x (3.26d)
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Andrews (1981) showed that Π1 e Π2 are positive-definite functions to the lowest order.

Let’s expand the available potential energy per mass unity

Π1 =

∫∫∫
V

dV

(
1

2ρ0C2
s

p′2 − 4 + κ

6ρ0C2
sp0

p′3 +
1

2ρ0p0C2
s

p′3 +O(p′4)

)
(3.27a)

Π2 =

∫∫∫
V

dV

(
g2ρ0

2N2

(
θ′

θ0

)2

+
g2

2N2
ρ′
(
θ′

θ0

)2

− g2ρ0

3N2

(
θ′

θ0

)3
)

(3.27b)

where p′ = p− p0, ρ′ = ρ− ρ0 and θ′ = θ − θ0. Thus, the pseudo-energy of the system is

A (u) =

∫∫∫
V

dV

(
1

2
ρ|~v′|2 +

1

2ρ0C2
s

p′2 +
g2ρ0

2N2

(
θ′

θ0

)2
)

(3.28a)

+

∫∫∫
V

dV

(
− 4 + κ

6ρ0C2
sp0

p′3 +
1

2ρ0p0C2
s

p′3 +
g2

2N2
ρ′
(
θ′

θ0

)2

− g2ρ0

3N2

(
θ′

θ0

)3
)

(3.28b)

+O(θ′4) +O(p′4) (3.28c)

Consider the following variable transformation

θ′ → θ′

θ0

gρ0 (3.29)

Now the pseudo-energy (3.28) becomes

A (u) =

∫∫∫
V

dV

(
1

2
ρ0|~v′|2 +

1

2ρ0C2
s

p′2 +
1

2ρ0N2
θ′2
)

(3.30a)

+

∫∫∫
V

dV

(
1

2
ρ′|~v′|2 − 4 + κ

6ρ0C2
sp0

p′3 +
1

2ρ0p0C2
s

p′3 +
1

2ρ2
0N

2
ρ′θ′2 − 1

3N2ρ2
0g
θ′3
)

(3.30b)

+O(θ′4) +O(p′4). (3.30c)

So, the pseudoenergy can be written as

A = A (2) + A (3) +O(u′, v′, w′, p′, θ′)4 = const (3.31)

where its components are

A (2) =

∫∫∫
V

dV

(
1

2
ρ0|~v′|2 +

1

2ρ0C2
s

p′2 +
1

2ρ0N2
θ′2
)

(3.32)

A (3) =

∫∫∫
V

dV

(
1

2
ρ′|~v′|2 − 4 + κ

6ρ0C2
sp0

p′3 +
1

2ρ0p0C2
s

p′3 +
1

2ρ2
0N

2
ρ′θ′2 − 1

3N2ρ2
0g
θ′3
)

(3.33)

The quadratic terms of the pseudo-energy (3.32) is exactly the norm proposed by Kasahara

and Qian (2000). Kasahara and Qian (2000) obtained the quadratic terms of the pseudo-

energy by direct manipulation of perturbation equations.
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3.1 Governing Equations - Linear Problem

The nonhydrostatic primitive equations can be obtained by substituting (3.2), (3.3)

and (3.4) in (2.22)

du

dt
− fv = −1

ρ

∂p

∂x
(3.34a)

dv

dt
+ fu = −1

ρ

∂p

∂y
(3.34b)

δH
dw

dt
= −1

ρ

∂p

∂z
− g (3.34c)

dρ

dt
+ ρ

(
~∇ · ~V +

∂w

∂z

)
= 0 (3.34d)

p = ρRT (3.34e)

dp

dt
= γRT

dρ

dt
(3.34f)

where x, y and z are the zonal, meridional and vertical coordinates, recpectvely; δH is

equal to 1 if the model is nonhydrostatic and 0 if it is hydrostaic, T is temperature, ρ is

density, p is pressure, R is the universal gas constant for dry air, γ = Cp/Cv, where Cp is

the specific heat at constant pressure and Cv is the specific heat at constant volume. The

variable’s domain is {[0, Lx] × [0, Ly] × [0, zT ] × [0,+∞]}. The differential operators are

defined as

d

dt
=

∂

∂t
+ ~V · ~∇+ w

∂

∂z
, (3.35)

~V · ~∇ = u
∂

∂x
+ v

∂

∂y
, (3.36)

~∇ · ~V =
∂u

∂x
+
∂v

∂y
. (3.37)

~V = (u, v) is the horizontal wind vector field, w is the vertical wind component and f = f0

is the Coriolis parameter in a mid-latitude f−plane approximation, where f0 = 2Ω sinφ0,

a is the Earth’s and φ0 = π/4.

In order to obtain the normal modes of the model, we will express the dynamical
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variables of the model as perturbations around a basic state:

u(x, y, z, t) = u0(x, y, z, t) + u′(x, y, z, t), (3.38a)

v(x, y, z, t) = v0(x, y, z, t) + v′(x, y, z, t), (3.38b)

w(x, y, z, t) = w0(x, y, z, t) + w′(x, y, z, t), (3.38c)

p(x, y, z, t) = p0(x, y, z, t) + p′(x, y, z, t), (3.38d)

ρ(x, y, z, t) = ρ0(x, y, z, t) + ρ′(x, y, z, t), (3.38e)

T (x, y, z, t) = T0(x, y, z, t) + T ′(x, y, z, t), (3.38f)

θ′(x, y, z, t) =
g

C2
s

p′(x, y, z, t)− gρ′(x, y, z, t). (3.38g)

Here we choose a resting, isothermal, hydrostatic basic state

u0 = v0 = w0 = 0 p0 = p0(z), ρ0 = ρ0(z) (3.39a)

dp0

dz
= −ρ0g, T = T0. (3.39b)

Just like Qian and Kasahara (2003), we will substitute (3.38) and (3.39) in (3.34), but

retain the quadratic terms

∂u′

∂t
− fv′ + 1

ρ0

∂p′

∂x
= −~V ′ · ∇u′ − w′∂u

′

∂z
+
ρ′

ρ2
0

∂p′

∂x
(3.40a)

∂v′

∂t
+ fu′ +

1

ρ0

∂p′

∂y
= −~V ′ · ∇v′ − w′∂v

′

∂z
+
ρ′

ρ2
0

∂p′

∂y
(3.40b)

∂w′

∂t
+

1

ρ0

∂p′

∂z
+

g

C2
sρ0

p′ − θ′

ρ0

= −~V ′ · ∇w′ − w′∂w
′

∂z
+
ρ′

ρ2
0

∂p′

∂z
+ g

ρ′2

ρ2
0

(3.40c)

1

C2
s

∂p′

∂t
− gρ0

C2
s

w′ + ρ0

(
∇ · ~V ′ + ∂w′

∂z

)
= − 1

C2
s

(
~V ′ · ∇p′ + w′

∂p′

∂z

)
+ (3.40d)

+
1

C2
s

T ′

T0

(
−gρ0w

′ +
∂p′

∂t

)
− ρ′

(
∇ · ~V ′ + ∂w′

∂z

)
∂θ′

∂t
+N2w′ρ0 = −~V ′ · ∇θ′ − w′∂θ

′

∂z
+

g

C2
s

T ′

T0

(
−gρ0w

′ +
∂p′

∂t

)
(3.40e)

where N is the Brunt-Vaisala frequency, Cs is the speed of sound

N2 = −g
(

1

ρ0

dρ0

dz
+

g

C2
s

)
=
gκ

H
(3.41)

C2
s = γRT0 (3.42)

~V ′ · ~∇ = u′
∂

∂x
+ v′

∂

∂y
(3.43)

~∇ · ~V ′ = ∂u′

∂x
+
∂v′

∂y
(3.44)
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where H = RT0/g is the height scale for an isothermal atmosphere and κ = R/Cp. Equa-

tions (3.40) can be written in a more compact form using differential operators

∂~u

∂t
+ L (~u) = N (~u, ~u) (3.45)

where ~u = [u′, v′, w′, p′, θ′]T is the state vector of the model, L is the linear differential

operator

L =



0 −f 0 ρ−1
0 ∂x 0

f 0 0 ρ−1
0 ∂y 0

0 0 0 ρ−1
0 (∂z + g/C2

s ) −ρ−0 1

ρ0C
2
s∂x ρ0C

2
s∂y ρ0C

2
s (∂z − g/C2

s ) 0 0

0 0 ρ0N
2 0 0


, (3.46)

and N (~u, ~u) is a vector with the nonlinear quadratic terms

B(Ψ,Ψ) =



−V ′ · ∇u′ + ρ′∂xp
′/ρ2

0

−V ′ · ∇v′ + ρ′∂yp
′/ρ2

0

−V ′ · ∇w′ + ρ′∂zp
′/ρ2

0 + gρ′/ρ0
2

−V ′ · ∇p′ + p′(∂tp
′ − gρ0w

′)/p0

−V ′ · ∇θ′ + (g/C2
s )p′(∂tp

′ − gρ0w
′)/p0 − gρ′(∂tρ′/ρ0 − w′/H)


. (3.47)

The normal modes ~ua(x, y, z) are the characteristic solutions of the linearized equations,

i.e., solutions of (3.45) when N (~u, ~u) = 0. These modes are labeled with an index a =

(m,n, k, r), where m is the zonal wavenumber, n is the meridional wavenumber, k is

the vertical wavenumber, and r is the kind of oscillation. Qian and Kasahara (2003)

described the normal modes of the nonhydrostatic primitive equations on a mid-latitude

and equatorial beta planes.

3.2 Separation of Variables

To obtain the normal modes, we must solve the linearized version of equation (3.45)

∂~u

∂t
+ L (~u) = 0 (3.48)
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Following Qian and Kasahara (2003), a convenient separation of variables is

ρ
1/2
0 u′

ρ
1/2
0 v′

ρ
−1/2
0 p′

ρ
1/2
0 w′

ρ
−1/2
0 θ′

ρ
−1/2
0 ρ′

ρ
−1/2
0 T ′


=



U(y)ξ(z)

iV (y)ξ(z)

W (y)ξ(z)

iW (y)η(z)

W (y)θ(z)

W (y)ζ(z)

W (y)χ(z)


exp [i(mx− ωt)] (3.49)

where i =
√
−1 is the imaginary unit, m is the zonal wavenumber and ω is the natural

time frequency. Plugging (3.49) in (3.48)

−ωU − fV +mW = 0, (3.50a)

fU + ωV +
dW

dy
= 0, (3.50b)

dξ

dz
+

1

2ρ0

dρ0

dz
ξ + δHωη + gζ = 0, (3.50c)

−ωθ +N2η = 0, (3.50d)

− 1

C2
s

Wξ +

(
mU +

dV

dy

)
ξ +WL1(η) = 0, (3.50e)

where

L1 =
d

dz
− Γ (3.51)

Γ =
1

2ρ0

dρ0

dz
+

g

C2
s

=
1

2

(
g

C2
s

− N2

g

)
. (3.52)

and applying the following separability condition Kasahara and Qian (2000); Qian and

Kasahara (2003),

mU +
dV

dy
=

ω

ghe
W (3.53)

where he is the separation parameter, also known as equivalent height. The equivalent

height in a compressible and hydrostatic atmosphere is analogous to the depth of a homo-

geneous ocean Taylor (1936). We will also consider a rigid-lid boundary condition on the

vertical direction

w′(x, y, z = 0, t) = w′(x, y, z = zT , t) = 0

⇒ η(0) = η(zT ) = 0, (3.54)
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After some manipulations, Qian and Kasahara (2003) showed that (3.50) and 3.53 reduces

to the following vertical eigenvalue problem

L2

[(
1

C2
s

− 1

ghe

)−1

L1(η)

]
= (N2 − δHω2)η (3.55a)

ω

(
− 1

C2
s

+
1

ghe

)
ξ + L1(η) = 0 (3.55b)

θ =
N2

ω
η (3.55c)

ζ =
ξ

C2
s

− θ

g
(3.55d)

χ =
ξ

RT0

− ζ (3.55e)

L1 =
d

dz
+ Γ (3.55f)

L2 =
d

dz
− Γ (3.55g)

Γ =
1

2ρ0

dρ0

dz
+

g

C2
s

(3.55h)

η(0) = η(zT ) = 0 (3.55i)

Adding also a rigid-lid boundary condition in the meridional direction yields the following

meridional eigenvalue problem (Qian and Kasahara, 2003)

d2V

dy2
+

{
1

ghe

[
ω2 − (f0 + βy)2

]
− m

ω
β −m2

}
V = 0 (3.56a)(

d

dy
− mf

ω

)
V =

(
1

ghe
− m2

ω2

)
ωW (3.56b)

U =
−ω(f0 + βy)V +mghedV/dy

ω2 −m2ghe
(3.56c)

V (0) = V (Ly) = 0 (3.56d)

where (3.56a) is the Laplace’s Tidal equation analogue in a cartesian geometry. The

separation parameter he is defined as follows

he =
C2
s

g

(
1 +

C2
sλki

N2 − δHω2

)−1

, (3.57)

and the eigenfrequencies ω can be obtained by solving

ω3 −
[
(m2 + n2)ghe + f 2

0

]
ω −mβghe = 0. (3.58)
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3.3 Normal Modes on a f−plane.

Qian and Kasahara (2003) showed that three kinds of normal modes characterize the

nonhydrostatic shallow model on a f−plane. There are acoustic modes, inertia-gravity

modes, Lamb modes. Acoustic modes have time frequency higher than the Brunt-Vaisala

frequency. They are present only in nonhydrostatic, compressible models. Inertia-gravity

modes’ frequency is limited by the Brunt-Vaisala frequency. Long gravity waves are nearly

hydrostatic, while short gravity waves exhibit nonhydrostatic effects. Lamb modes are

present in both hydrostatic and nonhydrostatic models. They are characterized for having

no vertical velocity, i.e., w′(z) ≡ 0.

3.3.1 Eigenfunctions Meridional and Vertical Structures

Meridional eigenfunctions are easily obtained by solving the eigenvalue-eigenfunction

problem (3.55). First, we solve (3.55a) with (3.55i) and obtain η = η(z). Once η(z)

is known, the remaining eigenfunctions are easily obtained by direct substitution. The

resulting eigenfunctions are

ηi(z) = Aki sin (kz) (3.59a)

ξi(z) =

(
1

C2
s

− 1

ghe

)−1
Aki
ω

[k cos (kz)− Γ sin (kz)] (3.59b)

θi(z) =
N2

ω
ηi(z) (3.59c)

ζi(z) =
ξi(z)

C2
s

− θi(z)

g
(3.59d)

χi(z) =
ξi(z)

RT0

− ζi(z) (3.59e)

k =
kiπ

zT
, ki = 1, 2, 3 . . . (3.59f)



Section 3.3. Normal Modes on a f−plane. 45

Analogously, solving (3.56) gives the following set of meridional eigenfunctions

Vi(y) = Ani
sin (ny) (3.60a)

Ui(y) = Ani

−ωf0 sin (ny) +mnghe cos (ny)

ω2 −m2ghe
(3.60b)

Wi(y) =
Ani

ω

(
1

ghe
− m2

ω2

)−1 [
n cos (ny)− m

ω
f0 sin (ny)

]
(3.60c)

n =
niπ

Ly
, ni = 1, 2, 3 . . . (3.60d)

m =
2miπ

Lx
,mi = 1, 2, 3 . . . (3.60e)

With the f−plane approximation, equations (3.57) and (3.58) can be solved analytically.

The resulting eigenfrequencies are (Qian and Kasahara, 2003):

ω2
a

ω2
g

 =
1

2
C2
s

[
m2 + n2 + k2 +

(
1

2H

)2

+ f 2
0C
−2
s

]

×

1±

√√√√1−
4[N2(m2 + n2) + (k2 +

(
1

2H

)
)f 2

0 ]

C2
s [m2 + n2 + k2 +

(
1

2H

)2
+ f 2

0C
−2
s ]

 (3.61)

where ωa and ωg are the acoustic waves frequency and gravity wave frequency, respectively.

3.3.2 Eigenfunctions Orthogonality and Completeness

For the linearized equations the quadratic terms of the pseudo-energy (3.32) is exac-

tly conserved. The conservation of (3.32) implies that the linear eigenmodes satisfy the

following orthogonality relation (Kasahara and Qian 2000)

i(ωa − ωb)〈~ua, ~ub〉A(2) = 0, (3.62)

where ~ua and ~ub represent two arbitrary eigenvectors whose components are defined by

(3.48) and 〈·, ·〉A(2) refers to the inner product in terms of pseudoenergy A(2), given by

〈~ua, ~ub〉A(2) =

∫ zT

0

∫ Lx

0

∫ Ly

0

[
ρ0 (u∗aub + v∗avb + w∗awb) +

p∗apb
ρ0C2

s

+
θ∗aθb
ρ0N2

]
dydxdz (3.63)

with the superscript ”*”indicating the complex conjugate.

With the inner product (3.63), we can define the norm/energy Ea of a mode as

Ea := 〈~ua, ~ua〉A(2) = KEUa +KEVa +KEWa + THEa + AEEa (3.64)
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where the energy Ea is partitioned into zonal kinetic energy, meridional kinetic energy,

vertical kinetic energy, thermobaric energy and available elastic energy. Their respective

expressions are

KEUa =

∫∫∫
V

ρ0|ua|2dV = A2
kA

2
n

(Γ2 + k2) (f 2
0ω

2 + g2h2
em

2n2)

ω2
(

1
C2

s
− g

he

)2

(ω2 − ghem2)2

, (3.65a)

KEVa =

∫∫∫
V

ρ0|va|2dV = A2
kA

2
n

C2
sg

2h2
e(Γ

2 + k2)

ω2(C2
s − ghe)2

, (3.65b)

KEWa =

∫∫∫
V

ρ0|wa|2dV = A2
kA

2
ng

2h2
e

(
1

ω2 − ghem2

)2

(f 2
0m

2 + n2ω2), (3.65c)

THEa =

∫∫∫
V

|pa|2

ρ0C2
s

dV = A2
kA

2
ng

2h2
eN

2 f 2
0m

2 + n2ω2

N2(ω3 − ghem2ω)2
, (3.65d)

AEEa =

∫∫∫
V

|θa|2

ρ0N2
dV = A2

kA
2
ng

4h4
eC

2
s

(Γ2 + k2)(f 2
0m

2 + n2ω2)

ω2(C2
s − ghe)2(ω2 − ghem2)2

. (3.65e)

3.4 Linear Dispersion

The linear dispersion of the eigenmodes and their equivalent depths are shown in Fi-

gures 3.1 and 3.3, respectively.The dispersion curves (Fig. 3.1) are equations (3.61) and

we plug these frequency values in (3.57) to obtain Figure 3.3.

There is a clear separation of scale between acoustic modes and gravity modes (Figs.

3.1 and 3.3). Acoustic modes’ frequency is always higher than the Brunt-Vaisala frequency.

Gravity modes’ frequency is limited by the Brunt-Vaisala frequency. The equivalent depths

of these modes are separated by the equivalent depth of the external mode Hext = 7H/5

(Kasahara and Qian, 2000; Qian and Kasahara, 2003).

Figure 3.2 shows that long gravity modes have the same dispersion properties of hydros-

tatically balanced gravity waves. Nonhydrostatic effects are relevant for shorter gravity

waves. For vertically internal modes remain hydrostatic even for shorter gravity modes.

3.5 Normal Modes Energetics

In this section we will analyze the energy partition (3.65) of acoustic and gravity modes.

3.5.1 Gravity Modes

Figure 3.4 shows that nonhydrostatic gravity waves have more vertical kinetic energy

than horizontal kinetic energy. Vertically internal gravity haves retain their hydrostatic
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Figure 3.1: Dispersion curves of inertia-acoustic (IA) and inertia-gravity (IG) waves corresponding

to the first three baroclinic modes k = 1, 2, 3. All the curves are referred to the meridional index

n = 1. In this figure j is the zonal wave index, m is the vertical wave index.

characteristics even for small zonal scales (3.5). Long gravity waves with high meridional

index (Fig. 3.6) have more meridional kinetic energy than long gravity waves with lower

meridional index (Fig. 3.4). But, short (i.e., nonhydrostatic) gravity waves have the same

energy partition, regardless of their meridional index.

3.5.2 Acoustic Modes

Long acoustic modes energy is dominated by available elastic energy (AEE) and vertical

kinetic energy (KEW) (Fig. 3.7). Short acoustic waves still have the majority of its energy

in the form of AEE, but their kinetic energy is concentrated in the form of zonal kinetic

energy (KEU).

Long and vertically internal acoustic waves present equipartition of energy between

AEE and KEW 3.8. This happens because the thermobaric (THE) portion of its energy is

shifted towards its AEE. However, the inversion of roles between KEU and KEW occurs
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Figure 3.2: Similar to Fig. 3.1, but only for the inertia-gravity waves (IG) and their correspondent

dispersion curves obtained by hydrostatic approximation (H).

only for shorter acoustic modes.

Acoustic modes with low and high meridional index are very similar. However, for

long acoustic modes, with high meridional index, the meridional kinetic energy (KEV)

partition is more significant than the zonal kinetic energy (KEU). Short acoustic modes’

energy partition is similar for low and high meridional index.
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Figure 3.3: Equivalent height of acoustic (AI) and gravity modes (IG). In this figure j is the zonal

wave index, m is the vertical wave index. All curves are for meridional index 1.
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Figure 3.4: Gravity modes energy partition for vertical mode ki = 1 and meridional index ni = 1.
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Figure 3.5: Gravity modes energy partition for vertical mode ki = 5 and meridional index ni = 1.
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Figure 3.6: Gravity modes energy partition for vertical mode ki = 1 and meridional index ni = 5.
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Figure 3.7: Acoustic modes energy partition for vertical mode ki = 1 and meridional index ni = 1.
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Figure 3.8: Acoustic modes energy partition for vertical mode ki = 5 and meridional index ni = 1.
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Figure 3.9: Acoustic modes energy partition for vertical mode ki = 1 and meridional index ni = 100.
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Chapter 4

Weakly Nonlinear Dynamics

4.1 Modal expansion

Now we use the orthogonality and completeness of the linear eigenmode functions

described in the previous chapter to expand the solution of our nonlinear system (3.45) in

a series

u =



u′(x, y, z, t)

v′(x, y, z, t)

w′(x, y, z, t)

p′(x, y, z, t)

θ′(x, y, z, t)


=
∑
a

Aa(t)ua + C.C., (4.1)

where ”C.C.”indicates the complex conjugate of what is preceding, Aa(t) refers to the

complex-valued spectral amplitudes and the vector ua = [ua, va, wa, pa, θa]
T represents the

eigenvector function of a particular mode that is obtained by solving

iωaua = Lua, (4.2)

with the boundary conditions discussed in the last chapter.

The expansion series (4.1) is an exact solution of system (3.45) provided the mode

amplitudes Aa(t) satisfy the following equation

EaA
′
a(t) =

∑
b

∑
c

σbca AbAce
−iδabct, (4.3)

where

Ea = 〈ua,ua〉A(2) (4.4)
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is the intrinsic energy (i.e., the squared norm) of the a-th mode and δabc = ωa − ωb − ωc
represents the mismatch among the linear eigenfrequencies of each mode triplet abc. If

δabc = 0, the triad is said to be resonant ; the coupling constants σbca are the projection of

the nonlinear terms due to the action of two modes b and c onto another mode a, .i.e.,

σabc = 〈uc,N (ua,ub) + N (ub,ua)〉A(2) (4.5)

where N is the bilinear operator containing the nonlinear terms of system (3.45), so all the

information on the nonlinearity of our model equations is contained in these coefficients.

Explicitly,

2σabc :=

∫∫∫
dxdydz

{(
−ua∂xub − va∂yub − wa∂zub +

1

ρ2
0

ρa∂xpb + (a↔ b)

)
u∗cρ0+(

−ua∂xvb − va∂yvb − wa∂zvb +
1

ρ2
0

ρa∂ypb + (a↔ b)

)
v∗cρ0+(

−ua∂xwb − va∂ywb − wa∂zwb +
1

ρ2
0

ρa∂zpb + g
ρaρb
ρ2

0

+ (a↔ b)

)
w∗c+(

−ua∂xpb − va∂ypb − wa∂zpb −
pa
p0

(∂tpb − gρ0wb) + (a↔ b)

)
p∗c
ρ0C2

s

+(
−ua∂xθb − va∂yθb − wa∂zθb +

g

C2
s

pa
p0

(∂tpb − gρ0wb)− g
ρa
ρ0

(∂tρb + wb∂zρ0) + (a↔ b)

)
θ∗c

ρ0N2

}
.

(4.6)

where (a↔ b) means the same term as what is preceding but with the permutation of the

indices a and b. The interacting triads are those whose coupling constants are nonzero. The

orthogonality of the (x, y) basis functions (i.e. complex exponential in x and trigonometric

functions in y) requires the wave modes of an interacting triad to satisfy

ma = mb +mc, (4.7a)

na = nb + nc. (4.7b)

In addition, the vertical coupling integrals involved in (4.5) appear in the form∫ zT

0

ρ
− 1

2
0 cos[(ka ± kb ± kc)z]dz.

Thus, due to the presence of the ”weight function”ρ
− 1

2
0 in the vertical coupling constants,

unlike the horizontal wavenumbers, there is no an excluding selection rule imposed by the

vertical structures of the triad components. However, as ρ0 is a monotonically decreasing
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function of z, if ka ± kb ± kc 6= 0 the vertical coupling integrals will be small, so that the

triads whose wave modes do satisfy the condition

ka ± kb ± kc = 0, (4.8)

together with conditions (4.7), undergo the strongest interactions, even though condition

(4.8) is no longer excluding. These wave triplets shall be called hereafter as interacting

triads.

4.2 Energy constraints for the interacting triads

As explained by Ripa (1981) in the context of barotropic Rossby waves and internal

gravity waves in a vertical plane and Ripa (1983a) and Vanneste and Vial (1994) for the

equatorial beta-plane and spherical geometry shallow-water equations, respectively, the

conserved quantities which are quadratic to lowest order in terms of wave disturbances lead

to relations among the coupling constants of an interacting triad. Thus, in what follows

we shall apply their approach in our nonhydrostatic context. In this way, substituting the

mode expansion (4.1) into (3.32) and (3.33) yields:

A (2) =
∑
a

Ea|Aa|2 (4.9a)

A (3) =
∑
a

∑
b

∑
c

2Sabc Re(AaA
∗
bA
∗
ce
iδabct) (4.9b)

Equations above show that, as a consequence of the orthogonality relation (3.62), the

leading-order (quadratic) pseudoenergy has a diagonalized representation in terms of the

linear eigenmodes, whilst the cubic pseudoenergy A (3) is expanded in terms of all interac-

ting triads, with coefficients Sabc being given by

Sabc =

∫ zT

0

∫ Lx

0

∫ Ly

0

{
1

2
ρa(u

∗
bu
∗
c + v∗bv

∗
c + w∗bw

∗
c ) (4.10)

+
paρ
∗
bρ
∗
c

2ρ0p0C2
s

+
ρaθ
∗
bθ
∗
c

2ρ2
0N

2
− θa ∗ θ∗bθ∗c

3N2ρ2
0g
− 4 + κ

6ρ0C2
sp0

pap
∗
bp
∗
c + CP

}
dxdydz (4.11)
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where CP means the same term as what is preceding but with cyclic permutations among

the subscripts abc. On the other hand, from equation (4.3) it follows

Ea
d|Aa|2

dt
=
∑
b

∑
c

σbca Im(A∗aAbAce
−iδabct) (4.12a)

d(AaA
∗
bA
∗
c)

dt
= O(A4) (4.12b)

Taking the time-derivative of (4.9a), (4.9b) and using (4.12) we get∑
a

∑
b

∑
c

[σbca + Sabcδabc]2i Im(A∗aAbAce
−iδabct) +O(A4) = 0 (4.13)

Equation above shows that total pseudoenergy is no longer conserved for an arbitrary

truncation of (4.1)1. Nevertheless, the rate of change of total pseudoenergy for an arbitrary

truncation of our model equations is of O(|A|4). Thus, for small disturbances, the variation

of total pseudoenergy will also be small, even for truncated models. Conversely, regardless

of the modal truncation, a necessary condition for equation (4.13) to hold is that the sum

inside the square brackets must vanish identically for all interacting triads, namely

σbca − σacb − σabc = −δabcSabc (4.14)

For resonant triads (δabc = 0) or triads containing only vortical modes (i.e. modes with

ω ≡ 0), the constraint above reduces to

σbca − σacb − σabc = 0.

For these kinds of triads, the quadratic component A(2) of total pseudoenergy is exactly

conserved. Consequently, the wave mode with the largest absolute value coupling constant

of the triad (say, mode a) will always receive energy from or lose to the remaining triad

components. Moreover, in these resonant interactions, condition σbca − σacb − σabc = 0,

together with the resonance relation ωa − ωb − ωc = 0, implies that this mode having the

largest absolute value coupling coefficient will always be the one with the largest absolute

eigenfrequency. This mode is usually labeled as pump wave from the context of plasma

physics (Weiland and Wilhelmsson, 1977). For brevity in exposition, henceforth we will

keep using this notation when referring to this mode.

1 Actually, total pseudoenergy of model equations (3.45) is not exactly conserved even for the full

expansion case due to the O(u′, v′, w′, p′, θ′)4 terms in (3.31).
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In contrast, equation (4.14) implies that any non-resonant interacting triplet involving

acoustic and/or gravity waves undergoes time variations of A (2), which occur partially at

the expense of time variations of A (3) associated with the referred triad. Table 2 shows

a sample of interacting triads involving acoustic and gravity wave types. It can be noted

that, in general, even for triads involving two gravity modes and one acoustic mode, which

are characterized by a large frequency mismatch δabc, the acoustic mode is always the pump

mode in this kind of triad interaction. Nevertheless, the large time-frequency mismatch

associated with this triad interaction type inhibits the energy exchanges among the mode

components since it requires an unrealistically high amplitude of the acoustic mode in

order for pump wave instability to occur, as will be shown in the next section.

4.3 Analysis of Highly Truncated Spectral Solutions

Given the general theoretical framework of the nonlinear interaction among the wave

modes of our nonhydrostatic model employed in the previous section, in this section we will

further investigate highly truncated versions of the interaction equations (4.3) to analyse

the possibility of acoustic modes to excite inertio-gravity waves. First we will consider the

most elementary form of the interaction equations: a single interacting wave triplet. Then

we augment our analysis for considering two coupled interacting wave triads.

4.3.1 Single triad interaction

Consider the modal expansion (4.1) for a single interacting triad of modes (a, b, c),

equation (4.3) now reads:

EaA
′
a = σbca AbAce

−iδabct, (4.15a)

EbA
′
b = σacb AaA

∗
ce
iδabct, (4.15b)

EcA
′
c = σabc AaA

∗
be
iδabct. (4.15c)

In the case of a resonant interaction (δabc = 0), it is well known that if one of the wave

modes hold most part of the initial energy of the triplet, this mode will only be unstable

if it is the pump wave of the triad (see Craik 1988, Chapter 8). Here we extend such

linear stability analysis for an arbitrary value of the mismatch δabc to encompass all the

possibilities of interacting triads involving acoustic and gravity modes in the present model.
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To study the stability of one wave mode in the single-triad interaction equations above,

it is suitable to make the transformation of variable Ab(t) = Ãb(t)e
iδabct (Lopes and Chian,

1996). Inserting this transformation, equations (4.15) become

EaA
′
a = σbca AbAc, (4.16a)

Eb(A
′
b + iδabcAb) = σacb AaA

∗
c , (4.16b)

EcA
′
c = σabc AaA

∗
b , (4.16c)

where the ”∼ ”has been omitted to avoid cumbersome notation. Notice that |Ab(t)| =

|Ãb(t)|.Let us assume that Mode a is the pump mode of the triad (i.e., |σbca | > max(|σacb |, |σabc |))

and its initial energy level dominates the total energy of the triad, that is, |Aa(0)| �

max(|Ab(0)|, |Ac(0)|). With these assumptions, equations (4.16) can be approximated by

their linearized version around Mode a’s amplitude

Aa(t) = Aa(0) = const, (4.17a)

A′′b + iδabcA
′
b = −σ

ab
c σ

ac
b

EcEb
|Aa|2Ab. (4.17b)

Thus, as the coupling constants are purely imaginary numbers, in order for instability to

occur two conditions must be satisfied:

Im(σacb ) Im(σabc ) > 0, and (4.18a)

δ2
abc <

4 Im(σacb ) Im(σabc )

EbEc
|Aa|2. (4.18b)

Otherwise, the solution is stable, and no amplification of Modes b and c occurs. Condition

(4.18a) says that Mode a must be the pump mode of the triad. For an exact resonant

interaction, this condition is the only requirement for instability to occur. Conversely,

according to condition (4.18b), the minimal value of Mode a’s amplitude for instability to

occur increases linearly as the absolute value of the mismatch parameter increases.

Consequently, for an interacting wave triplet composed of two inertio-gravity waves

and one inertio-acoustic mode, the amplitude regime of the pump mode required to yield

instability might be so high to be observable in the real atmosphere due to the high time-

frequency mismatch among the triad components in this case. For example, for the case

of Triad 3 of Table 4.1 composed of mesoscale acoustic and gravity modes, the frequency
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mismatch is δabc
2Ω
≈ 378, giving a threshold amplitude associated with vertical wind per-

turbations of the order of 200 m/s. Thus, for an acoustic mode amplitude value yielding

dynamical field perturbations with realistic values, there is no pump wave instability for

this triplet. Fig. 4.2 displays the result of a time integration of the full nonlinear version

of the three-wave interaction equations (4.15) for an amplitude value of the pump mode

of Triad 3 of Table 4.1 that yields realistic values of the perturbation field variables. This

figure confirms that, for the mode amplitudes associated with realistic values of atmosphe-

ric flow disturbances, the high frequency mismatch associated with the interacting triads

involving an acoustic mode and two gravity waves strongly inhibits the energy exchanges

among the modes of such triads.

In contrast, an acoustic-inertia wave mode can undergo pump wave instability in near

resonant triads involving another acoustic-inertia wave and an inertio-gravity mode. In

fact, for the parameters of Triad 1 of Table 4.1 and the value of |Aa| chosen to yield a vertical

wind magnitude of ≈ 2.4 m/s, parametric instability does occur. Numerical integration of

the full equations (4.15) in this referred amplitude regime illustrates the expressive energy

modulations undergone by the three wave modes (Fig. 4.1) of this triplet.

Teruya (2014) analysed the dynamics of a single resonant triad interaction with a wave

triplet similar to the one illustrated in Fig. 4.1. They analysed the analytical solution of

the interaction equations (4.15) for the exact resonant case δabc = 0 with |Aa(t = 0) = 0|

and discussed the consequences of the mode energy modulations for the physical space

solution [u′, v′, w′, p′, θ′] in view of the energy partition of each mode type on the kinetic,

available elastic and available potential forms. As in the full system (4.3) a single wave

mode may participate of several connected wave triplets, to investigate in a simplified

fashion the possibility of each of the wave modes excited by the pump acoustic wave

instability illustrated in Fig. 4.1 to excite other gravity wave modes, we shall augment our

analysis of the phase-space dynamics to consider two triads coupled by a single mode.
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Figure 4.1: Time evolution of the energy of a resonant triad (triad 1 from Table 4.1).

4.3.2 Two triads coupled by one mode

Let us now consider a truncated version of modal expansion (4.1) that considers five

modes (a,b,c,d,e) whose wavenumbers and eigenfrequencies satisfy the relations

ma = mb +mc, (4.19a)

na = nb + nc, (4.19b)

ka = ±kb ± kc, (4.19c)

ωa = ωb + ωc + δabc, (4.19d)

mc = md +me, (4.19e)

nc = nd + ne, (4.19f)

ωc = ωd + ωe + δcde. (4.19g)

Notice that we have imposed the interaction condition for the vertical wavenumbers only

to the primary triad (a,b,c). This is because the condition for the vertical wavenumbers is
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Figure 4.2: Time evolution of the energy of a nonresonant triad (triad 14 from Table 4.1).

no longer excluding. So, other triads that do not satisfy kc = ±kd ± ke can be excited by

the mode coupling the two triads. In this situation, equation (4.3) now reads

EaA
′
a = σbca AbAce

−iδabct, (4.20a)

EbA
′
b = σacb AaA

∗
ce
iδabct, (4.20b)

EcA
′
c = σabc AaA

∗
be
iδabct + σdec AdAee

−iδcdet, (4.20c)

EdA
′
d = σced AcA

∗
ee
iδcdet, (4.20d)

EeA
′
e = σcde AcA

∗
de
iδcdet. (4.20e)

In order to analyze the stability of the triad interaction (a,b,c) to small amplitude

perturbations associated with the interacting modes (c,d,e), let us assume first that |Ac(t =

0)| � max(|Ad(t = 0)|, |Ae(t = 0)|). In this case, Mode c evolves independently of Modes d

and e, and its amplitude obeys the three wave equations (4.15). Furthermore, by explicitly

expressing Ac, Ad and Ae in terms of their real and imaginary parts, the linearized version
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of equations (4.20d)-(4.20e) around the amplitude of Mode c can be written as

X′ = M(t)X (4.21)

where X = [Adr , Adi , Aer , Aei ]
T and the matrix M(t) is defined by

M(t) =

 02×2 Md(t)

Me(t) 02×2

 (4.22)

where 02×2 is the two by two zero matrix and Md(t) is defined as

Md(t) =

− Im(σce
d )

Ed
(Acr sin(δcdet) + Aci cos(δcdet))

Im(σce
d )

Ed
(−Aci sin(δcdet) + Acr cos(δcdet))

Im(σce
d )

Ed
(Acr cos(δcdet)− Aci sin(δcdet))

Im(σce
d )

Ed
(Aci cos(δcdet) + Acr sin(δcdet))


(4.23)

If the matrix coefficient M(t) is periodic, Floquet’s theorem (Arnol’d, 1989; Vanneste

and Vial, 1994; Majda, 2003) can be used to study the stability of system (4.21). Con-

versely, as we are considering arbitrary time-frequency mismatchs δabc and δcde, in order

for M(t) to be exactly periodic (and, therefore, Floquet theory be applicable), two con-

ditions must be met: i) the mismatch δabc and the nonlinear oscillation frequency of the

spectral amplitudes Aa, Ab and Ac must be co-measurable; and ii) the resulting oscillation

frequency of Ac(t) be also co-measurable with the second triad mismatch δcde. As these

two conditions are very restrictive, a more general way to analyze the stability of the afo-

rementioned linear system is to estimate its maximal Lyapunov exponent (MLE) (Zounes

and Rand, 1998), for which the MLE being positive means instability. The MLE has been

evaluated using the method described in Benettin et al. (1976), whose implementation is

available in (Datseris, 2018).

For the 5-wave system composed of the modes of Triads 1 and 2 of Table 4.1, the MLE

of system (4.21) associated with the linearized dynamics of the gravity modes (170, 1, 2)

and (169, 1, 2) is ΛL = 1.35×10−5s−1, corresponding to a growth rate of 1/20.5h−1, which

seems compatible with the typical time-scale of internal-gravity waves. In this case, the

time modulation of Ac(t) refers to the solution illustrated in Fig. 4.1. The instability of

the gravity wave-mode (339, 1, 2) to the other two gravity modes of Triad 2 of Table 4.1 is

illustrated in the numerical integration of system (4.21) displayed in Fig. 4.3, which shows

the growth of the gravity wave harmonics (170, 1, 2) and (169, 1, 2). Since the gravity mode

(339, 1, 2) representing Mode c in this example is the pump wave of the triplet (c,d,e),
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this instability appears more likely to be a pump wave instability than a modulational

instability explored by Connaughton et al. (2010) in the Rossby wave context.
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Figure 4.3: Numerical solution of the duet system forced by triad 1 and composed by modes (170,1,2,IG),

(169,1,2,IG) from triad 2. This solution presented a maximal Lyapunov exponent λL = 1.35E − 5.

In fact, if we consider the coupling between Triads 1 and 13 of Table 4.1 through

the same gravity mode (339, 1, 2), that is, if we replace Triad 2 to Triad 13 (which has

a larger time-frequency mismatch) in our 5-wave system, the solution of (4.21) is stable

(MLE ΛL = −4.85×10−10s−1) and no amplification of a pair of other gravity waves occurs

(Fig. 4.4). Fig. 4.5 illustrates a similar situation when Modes d and e are gravity modes

and Mode c is an inertio-acoustic mode. In this case, the planetary acoustic mode of

Triad 1 of Table 4.1 couples this triad with the two inertio-gravity modes of Triad 15,

and the MLE of system (4.21) is positive but very close to zero. In fact, the MLE in this

case is ΛL = 6.59 × 10−11s−1, corresponding to a growth rate of ≈ 1/180day−1, which

is no longer compatible with the observed time-scale of gravity waves. Therefore, in this

situation, as in the previous case displayed in Fig. 4.4, system (4.21) is stable and there

is no amplification of the two gravity modes. The numerical integration of the nonlinear
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five-wave system (4.20) for the corresponding stable cases of the linearized system (4.21)

displayed in Figs. 4.4 and 4.5 confirms that there is no energy leakage from Triad 1 towards

the other gravity modes, so that the time evolution of Modes (a,b,c) is identical to that

predicted by the three-wave problem displayed in Fig. 4.1 (figures not shown).
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Figure 4.4: Numerical solution of the duet system forced by triad 1 and composed by modes (170,1,1,IG),

(169,1,1,IG) from triad 13. This solution presented a maximal Lyapunov exponent λL = −4.85E − 10.

A result of numerical integration of the full 5-wave system for the unstable case of

system (4.21) is displayed in Figs. 4.6 and 4.7. In this numerical integration, the initial

condition is similar to those considered in Fig. 4.1, in which the pump acoustic wave (340,

1, 1) holds almost all initial energy of the system, with only a small energy perturbation

distributed among the remaining modes b, c, d and e. In this experiment Mode a excites

Modes b and c through pump wave instability (Figs. 4.6). After that, part of Mode c’

energy leaks to the gravity modes (170, 1, 2) and (169, 1, 2) (Modes d and e), yielding

the excitation of these modes (Fig. 4.7). In this case, Mode c acts as the pump mode

in the triad interaction with Modes d and e. Consequently, the time evolution of the

mode energies of the five-wave system in this case shows that, apart from the considerable
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Figure 4.5: Numerical solution of the duet system forced by triad 1 and composed by modes (169,1,2,IG),

(-168,1,1,IG) from triad 15. This solution presented a maximal Lyapunov exponent λL = 6.59E − 11.

energy modulations of the gravity modes d and e at the expense of Mode c, the coupling

of Mode c with the two gravity modes d and e also yields a multiplication of the periods

associated with the time evolution of the energies of Modes a and b, disturbing the energy

modulations of these modes from their exactly periodic nature predicted by the three wave

equations (4.15).

Another interesting feature regarding the unstable case is that the eigenfrequencies of

the gravity modes (170, 1, 2) and (169, 1, 2) representing Modes d and e in this example

are such that the linear wave dynamics of these modes is well described by hydrostatic

approximation, as well as the nonlinear interaction involving these inertio-gravity waves

and vortical modes. As the nonlinear interaction involving inertio-gravity waves and vorti-

cal modes have been demonstrated to play an important role in the nonlinear geostrophic

adjustment (Majda and Embid, 1998; Vanneste and Yavneh, 2004; Vanneste, 2004), the

theoretical results described here suggest that acoustic modes might be important for both

hydrostatic and geostrophic adjustment processes in the atmosphere.
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Table 4.1 - Each mode is represented by a zonal wavenumber, meridional wavenumber, vertical wave-

number and kind of wave. Frequencies ω and mismatch δabc are measured in Hertz. Modes 1,2,4,9,10 and

11 are nearly resonant.

Triad Mode a Mode b Mode c ωa ωb ωc δabc iσa iσb iσc

1 (1, 1, 1, IA) (339, 1, 2, IG) (340, 1, 1, IA) 5.89E-02 4.10E-03 6.30E-02 3.31E-05 -3.11E-01 -2.16E-02 -3.33E-01

2 (170, 1, 2, IG) (169, 1, 2, IG) (339, 1, 2, IG) 2.09E-03 2.08E-03 4.10E-03 -6.94E-05 -3.37E+02 -3.35E+02 -6.73E+02

3 (169, 1, 1, IG) (171, 1, 1, IG) (340, 1, 1, IA) 3.89E-03 3.93E-03 6.30E-02 5.52E-02 4.47E-01 4.45E-01 2.61E+00

4 (1, 1, 2, IA) (6, 1, 1, IA) (7, 1, 3, IA) 1.11E-01 5.89E-02 1.65E-01 -4.95E-03 -2.53E-03 -1.33E-03 -3.80E-03

5 (2, 1, 1, IG) (5, 1, 1, IG) (7, 1, 3, IA) 1.18E-04 1.59E-04 1.65E-01 1.65E-01 -1.55E+00 -1.55E+00 -2.38E-04

6 (10, 1, 1, IG) (329, 1, 2, IG) (339, 1, 1, IA) 2.58E-04 3.99E-03 6.30E-02 5.87E-02 4.78E+01 -5.50E+01 -5.27E+00

7 (2, 1, 1, IA) (338, 1, 2, IG) (340, 1, 1, IG) 5.89E-02 4.09E-03 7.43E-03 -5.55E-02 -1.90E+00 2.73E+01 2.58E+01

8 (5, 1, 1, IG) (350, 1, 2, IG) (355, 1, 1, IA) 1.59E-04 4.23E-03 6.34E-02 5.90E-02 4.53E+01 -5.06E+01 -5.22E+00

9 (62, 1, 1, IA) (107, 1, 3, IG) (169, 1, 1, IA) 5.90E-02 8.96E-04 5.99E-02 5.09E-09 -4.35E-01 -6.61E-03 -4.42E-01

10 (93, 1, 1, IA) (421, 1, 1, IG) (514, 1, 1, IA) 5.92E-02 8.90E-03 6.81E-02 -5.08E-08 1.06E+00 1.60E-01 1.22E+00

11 (180, 1, 3, IA) (478, 1, 2, IG) (658, 1, 3, IA) 1.66E-01 5.67E-03 1.72E-01 3.36E-08 -1.74E+00 -5.94E-02 -1.80E+00

12 (87, 1, 1, IG) (252, 1, 3, IG) (339, 1, 2, IG) 2.03E-03 2.09E-03 4.10E-03 -1.61E-05 -1.53E+03 -1.60E+03 -3.13E+03

13 (170, 1, 1, IG) (169, 1, 1, IG) (339, 1, 2, IG) 3.91E-03 3.89E-03 4.10E-03 -3.69E-03 -4.82E+01 -4.64E+01 -9.50E+01

14 (1, 1, 1, IA) (339, 1, 1, IG) (340, 1, 1, IG) 5.89E-02 7.41E-03 7.43E-03 -5.89E-02 -4.32E-01 -8.10E-01 -1.83E+00
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Figure 4.6: Numerical solution of a quintet composed of triads 1 and 2 from table 4.1.
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Figure 4.7: Numerical solution of a quintet composed of triads 1 and 2 from table 4.1.
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Chapter 5

Conclusions

Nonlinear triad interactions involving inertio-acoustic and inertio-gravity waves are

studied here in the context of the mid-latitude f -plane shallow nonhydrostatic equations

for a background state at rest and characterized by a hydrostatic balance and an isothermal

temperature profile. In this context, we have adopted highly truncated Galerkin expansions

in terms of the eigensolutions of the linear problem. For a single triad interaction, we have

shown that the interacting triplets involving two inertio-gravity waves and one acoustic

mode require a likely unrealistic modal amplitude regime in order for pump wave instability

to occur. Consequently, for direct triad interactions, an inertio-acoustic wave mode can

only be unstable to perturbations associated with a pair of acoustic/gravity modes.

In contrast, the analysis of the dynamics of two triads coupled by a single wave mode

shows that a nonhydrostatic inertio-gravity wave mode (i.e., having an eigenfrequency such

that the nonhydrostatic effect of vertical acceleration is not negligible) participating of a

nearly resonant interaction with two acoustic modes is unstable in nearly resonant triad

interactions with a pair of lower frequency inertio-gravity waves. In fact, for the representa-

tive example illustrated here in which the eigenfrequencies of the two excited inertio-gravity

waves are nearly a half of the time-frequency of the primary wave (which couples the two

triads), the numerical results of the nonlinear dynamics of the five-wave system confirm

that this instability yields energy modulations on the two secondary gravity modes. Since

the higher the time frequency the more important the nonhydrostatic effect of vertical

acceleration on the inertio-gravity waves, the results suggest that inertio-acoustic waves

may induce hydrostatically balanced inertio-gravity waves to undergo episodic amplitude

(energy) modulations due to inter-triad energy exchanges. On the other hand, if one of

the acoustic modes of a resonant interaction involving acoustic/gravity waves couple the
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two triads in our reduced 5-wave dynamics, our results show that the maximum Lyapunov

exponent of the corresponding linearized system for the two gravity waves gives a growth

time-scale of ≈ 180 days, which is no longer compatible with the observed time-scale of

internal gravity waves and, consequently, the resultant instability might likely be irrelevant

in the atmosphere.

As discussed in Chapter 1, due to the ultra-high frequency of acoustic waves, their

numerical treatment using explicit schemes implies highly restrictive computational cons-

traints. Consequently, in nonhydrostatic numerical models adopted for meso-scale simula-

tions the acoustic modes are either filtered out or subjected to strong damping associated

with implicit schemes having time-steps much higher than the acoustic cut-off period. No-

netheless, acoustic waves play an important role in the hydrostatic adjustment process as

they are responsible for the vertical displacements of fluid parcels associated with the ex-

pansion of an instantaneously heated atmospheric layer (Bannon 1995, 1996; Duffy 2003).

In fact, Chagnon and Bannon (2001) demonstrated that the steady-state solutions of ane-

lastic and other sound filtering models exhibit significant differences from those of fully

compressible models allowing acoustic modes.

Acoustic waves may be excited by thermal forcings associated with convective storms,

especially the localized ones that have a duration shorter than the acoustic cut-off period

given by 4πH
CS

(Chagnon and Bannon 2005a,b). Our simplified theoretical model suggests

that these acoustic modes generated by explosive and localized storms might play an im-

portant role in the transient phase of the three-dimensional adjustment process of the

atmosphere to both hydrostatic and geostrophic balances. Specifically, this role of acous-

tic modes in the adjustment process of the atmosphere might be due to not only their

linear energy propagation as studied by Chagnon and Bannon (2005a,b) but also their

nonlinear effect of exciting hydrostatic inertio-gravity waves as pointed out by our theo-

retical analysis. Fanelli and Bannon (2005) investigated the hydrostatic and geostrophic

adjustments to a prescribed thermal forcing utilizing a nonlinear compressible model, but

they considered a heating function with a duration longer than the acoustic cut-off period

of ≈ 5min so that no acoustic waves were excited. However, similar numerical studies with

a shorter time-scale forcing should be done to apply the present theory to the hydrostatic

and geostrophic adjustments in a more realistic fashion by considering the full expansion

(4.1). This might be the next step in the generalization of the present theory to further
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understand both the nonlinear dynamics of the nonhydrostatic wave modes itself and its

role in the nonlinear hydrostatic/geostrophic adjustment, along with testing the robustness

of the present theory.
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