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Resumo

A maioria das aplicações atualmente feitas usando teorias de marés de equiĺıbrio são

baseadas no uso de defasagens de maré ad hoc. Nos casos de aplicações feitas com a teoria

clássica de Darwin, por exemplo, a previsão para o estágio final da evolução rotacional é o

sincronismo para o caso de órbitas circulares e o supersincronismo para órbitas excêntricas

(onde o excesso de rotação em relação ao sincronismo é dado por ≈ 6ne2, onde n é o

movimento orbital médio e e é a excentricidade orbital). Recentemente, uma formulação

para marés de equiĺıbrio que considera uma solução linearizada da equação de Navier-Stokes

foi feita no IAG (ver Ferraz-Mello 2013, 2015). A teoria permite a descrição de marés de

equiĺıbrio tanto em corpos ŕıgidos (como super-Terras) quanto em corpos gasosos (como

mini-Netunos e Júpiteres quentes) ajustando apenas um parâmetro, que é o coeficiente de

viscosidade uniforme η.

A primeira versão da teoria da maré de fluência (ou seja, a versão proposta em Ferraz-

Mello 2013, 2015) foi baseada em uma expansão em série da chamada equação de fluência.

Nessa estrutura, a taxa de rotação do corpo deformado por maré foi considerada constante

ao resolver a equação de fluência. Em seguida, a taxa de rotação foi evolúıda considerando

a expressão de torque relacionada às interações de maré. Este método não é consistente

quando se trata da evolução da taxa de rotação do corpo deformado por maré. Uma das

consequências de considerar a taxa de rotação constante para o corpo ao resolver a equação

da fluência é que as librações da taxa de rotação no regime de rotação śıncrona são muito

pequenas para corpos ŕıgidos. Este resultado é inconsistente com a amplitude de libração

da taxa de rotação e o ângulo de defasagem das marés dos satélites planetários do Sistema

Solar.

Uma nova formulação da teoria da maré de fluência foi proposta em Folonier et al.



(2018). A nova versão da teoria leva a um tratamento consistente da dinâmica de rotação

do corpo deformado por maré, onde librações forçadas em torno da solução śıncrona (que

são caracteŕısticas no caso de corpos ŕıgidos, como super-Terras e satélites planetários) são

reproduzidas. Além disso, a nova versão da teoria da maré de fluência permite um estudo

da figura de equiĺıbrio do corpo deformado por maré de uma maneira muito mais simples

do que a versão anterior da teoria. Nesta tese, apresentamos aplicações da teoria das marés

de fluência a vários casos, onde são considerados tanto planetas gigantes gasosos quanto

planetas ŕıgidos semelhantes à Terra. Também discutimos em detalhes as diferenças entre

a primeira versão da teoria da maré de fluência (ver Ferraz-Mello 2013, 2015) e a nova

versão (ver Folonier et al. 2018).



Abstract

Most of the applications currently made using theories of equilibrium tides are based

on the use of ad hoc tidal lags. In the cases of applications made using Darwin’s classical

theory, for example, the prediction for the final stage of rotational evolution is the synch-

ronism for the case of circular orbits and the super-synchronism for eccentric orbits (where

the excess rotation with respect to synchronism is given by ≈ 6ne2, where n is the orbital

mean motion and e is the orbital eccentricity). Recently, a formulation for equilibrium

tides that considers a linearized solution of the Navier-Stokes equation was made at IAG

(see Ferraz-Mello 2013, 2015). The theory allows for the description of equilibrium tides in

both stiff bodies (such as super-Earths) as well as gaseous bodies (such as mini-Neptunes

and hot Jupiters) by tuning only one parameter, which is the uniform viscosity coefficient

η.

The first version of the creep tide theory (i.e., the version proposed in Ferraz-Mello

2013, 2015) was based on a series expansion of the so-called creep equation. In such

framework, the rotation rate of the tidally-deformed body was considered constant when

solving the creep equation. Afterwards, the rotation rate was evolved by considering the

torque expression related to the tidal interactions. This method is not consistent when

it comes to the evolution of the rotation rate of the tidally-deformed body. One of the

consequences of considering the constant rotation rate for the body when solving for the

creep equation is that the librations of the rotation rate in the synchronous rotation regime

are very small for stiff bodies. This result is inconsistent with the amplitude of libration

of the rotation rate and the tidal lag angle of planetary satellites of the Solar System.

A new formulation of the creep tide theory was proposed in Folonier et al. (2018). The

new version of the theory leads to a consistent treatment of the rotation dynamics of the



tidally-deformed body, where forced librations around the synchronous solution (which are

characteristic in the case of stiff bodies, such as super-Earths and planetary satellites) are

reproduced. Additionally, the new version of the creep tide theory allows for a study of the

equilibrium figure of the tidally-deformed body in a much simpler way than the previous

version of the creep tide theory. In this thesis, we present applications of the creep tide

theory to several cases, where both gaseous giant planets as well as stiff Earth-like planets

are considered. We also discuss in details the differences between the first version of the

creep tide theory (see Ferraz-Mello 2013, 2015) and the new version (see Folonier et al.

2018).
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Chapter 1

Introduction

Tidal interactions are essential for describing the spin and orbital evolution of close-in

exoplanets1. For more distant planets (i.e., the planets with orbital periods larger than

10 days), tides play an important role mainly on the spin evolution, with the timescale of

tidal orbital evolution being much longer. In any of the two aforementioned cases, a key

component concerning the tidal evolution of the systems is the chosen model for the tidal

interactions.

In standard Darwin’s theory (e.g., Darwin 1880) and its variations (see e.g., Kaula 1964;

Mignard 1979; Ferraz-Mello et al. 2008), the gravitational potential of the deformed body

is expanded in a Fourier series. The static component of the tide is then defined as the

instantaneous response of the equilibrium figure of the deformed body to the time-varying

position of the (point-mass) companion. Thus, the static tide corresponds to the limiting

case of an inviscid body (i.e., a body with zero viscosity). The dynamic component of the

tide is often introduced by considering exactly the same Fourier expansion procedure as

the static tide, with the introduction of ad hoc lags on the arguments of the periodic terms

of the Fourier expansion of the tidal potential.

All the aforementioned theories predict the existence of a stationary rotation. If the

tidal lags are assumed to be independent of the tidal forcing frequencies (as in MacDonald

1964; Goldreich 1966), the stationary rotation rate is given by Ωstat ≈ n(1 + 9.5e2). If the

tidal lags are assumed to be proportional to the tidal forcing frequencies (e.g., as in Mignard

1979; Ferraz-Mello et al. 2008), the stationary rotation rate becomes Ωstat ≈ n(1 + 6e2).

There are three main aspects of these results which must be kept in mind: (i) there is

1 For the purposes of this work, we will define close-in planets as the ones for which the orbital period is

smaller than 10 days, while planets with periods larger than 10 days are defined as more distant planets.
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no explicit dependence of the stationary rotation on the rheology of the body (e.g., the

body’s viscosity) and (ii) the theories predict that there are no other equilibrium states

for the rotation rate in a coplanar eccentric system other than the pseudo-synchronism.

Synchronous rotations or spin-orbit resonant states (such as Mercury’s current 3/2 spin-

orbit resonance) are only obtained by considering an additional torque due to a permanent

equatorial deformation of the body.

Additionally to the three points mentioned above, estimations of the tidal energy dissi-

pation and orbital evolution timescales using standard Darwin’s theory lead to ambiguities

due to the introduction of the so-called tidal quality factor Q. Essentially, the quality fac-

tors measures the quality of an oscillator in keeping free oscillations alive. The extension of

the quality factor to characterize tidal dissipation as a forced oscillation leads to a dicho-

tomy in its definition. Essentially, Q has a different definition for synchronous bodies when

compared to free rotating bodies. For highly-eccentric orbits, this dichotomy represents a

major problem, since the stationary rotation may deviate significantly from synchronism.

As a consequence of such a deviation, multiple frequencies may cause tidal dissipation and

it becomes difficult to choose the best value of Q to be employed.

Recently, a theory of equilibrium tides2 for viscous bodies has been proposed by Ferraz-

Mello (2013, 2015). In this Newtonian creep theory, an approximate solution of the Navier-

Stokes equation is used to compute the instantaneous surface deformation of the extended

body. The deformation is assumed to be proportional to the stress, and the proportionality

constant (namely, the relaxation factor γ) depends on the mass, radius and uniform visco-

sity coefficient of the extended body. The Newtonian creep theory can reproduce both the

characteristic spin-orbit resonant states for rocky bodies (such as Mercury-like planets) in

non-circular orbits as well as the pseudo-synchronous rotation for gaseous bodies (such as

mini-Neptunes and Jupiter-like planets). The only parameter that needs to be tuned to

make the transition between these two regimes is the uniform viscosity coefficient of the

body.

In a more recent work, a new version of the Newtonian creep theory was proposed

(Folonier et al., 2018). This new version considers that the time-varying shape of the

deformed body is an ellipsoid with unknown equatorial prolateness, polar oblateness and

lag angle. As a result, three first-order ordinary differential equations must be integrated

2 We refer to equilibrium tides as the tides caused by the time-varying shape of the extended body.
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to solve for the shape of the body, while the rotation rate can be evolved by using the

torque expression. The new version of the creep tide theory allows for a self-consistent

treatment of the short-period rotation rate variations when solving for the shape of the

body. The amplitude of oscillation of the rotation rate around the synchronous motion is

much larger than the value predicted by employing the previous version of the theory.

The main objectives of this work are: 1) To revisit the development of the creep tide

theory and make a comparison between the results obtained considering the old and new

version of the theory, 2) to apply the creep tide theory to study the figure and spin evolution

of a non-rigid homogeneous Mercury and 3) to apply the creep tide theory to study the

orbital evolution of exoplanetary systems.

This thesis is organized as follows: In Chapter 2, we revisit the main concepts of the

development of the Newtonian creep tide theory. We briefly discuss the approximations

made in the Navier-Stokes equation to obtain the creep equation and the posterior spin-

orbit and shape evolution equations. In Chapter 3, we present an application of the creep

tide theory to study the spin and shape evolution of Mercury. Chapter 4 is dedicated to a

presentation of the equations ruling the spin and orbit evolution of a two-body system in

which both bodies can be considered as the tide-raising body. In Chapter 5, we consider an

application of the creep tide theory to the orbital evolution of hot Jupiters. Our focus is the

analysis of the relaxation factor values for these systems which are consistent with both the

age estimations of the systems as well as their current orbital and rotational parameters.

Chapter 6 regards an application of the creep tide theory to study the secular spin-orbit

evolution of two exoplanetary systems containing potentially habitable exoplanets: the

LHS-1140 b-c and K2-18 b-c systems. In Chapter 7, we present an implementation of the

creep tide equations in the Posidonius N-body code (see Blanco-Cuaresma and Bolmont

2017a). In Chapter 8, we study how the transit-timing variations are affected by planetary

tidal interactions. For that end, we use the Posidonius code with the creep tide theory

implementation presented in the Chapter 7. Finally, Chapter 9 regards the conclusions of

our studies.
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Chapter 2

The creep tide theory

2.1 Introduction

Several theories of tidal interactions are based on the adjustment of the equilibrium

figure of a deformed body due to the gravitational potential of a disturbing companion.

These theories are called equilibrium tide theories. The first theory to model equilibrium

tides was proposed by Darwin in the XIX century (see Darwin 1880). Since such a pioneer

work of Darwin, equilibrium tides have been treated following different approaches. In the

hydrodynamical approach of the creep tide theory (see Ferraz-Mello 2012, 2013) and also

other approaches such as the Maxwell model (see Correia and Rodŕıguez 2013; Correia

et al. 2014), the starting point for the development of the theory is the static equilibrium

tide. The static equilibrium tide is herein defined as the hydrostatic equilibrium figure

of the tidally deformed body should its viscosity be zero (a.k.a the inviscid fluid limit).

The effects of the dynamic equilibrium tide are afterwards introduced, in which case the

response of the tidally deformed body considering the effects of a non-zero viscosity value

are taken into account.

In the case of a homogeneous tidally deformed body, the developments of the creep

tide theory have been treated in several previous works (Ferraz-Mello, 2012, 2013, 2015;

Folonier et al., 2018). In the work of Ferraz-Mello (2012, 2013), the creep tide equations

were developed considering that the static tide is given by a Jeans prolate spheroid (see

Chandrasekhar 1969). Only the equatorial part of the tidal deformation was used to

compute the equations for the tidal forces. The deformation of the body due to its rotation

was not taken into account. In Ferraz-Mello (2015), the creep tide theory was applied to

study the spin dynamics of planets and stars. In such work, the effect of tides on the
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polar oblateness of the body as well as the effect of the rotation rate on the primary’s

shape were included in order to obtain the tidal forces and torques. In both the works of

Ferraz-Mello (2012, 2013) and Ferraz-Mello (2015), the creep tide theory was developed

using the first approximation that the rotation rate is constant. This assumption considers

the rotation rate of the tidally deformed body as a constant to solve the equation for the

shape of the tidally deformed body. Afterwards, the rotational evolution is computed by

using the reaction of the torque acting on the point-mass companion. Such approach of

the creep tide theory is sufficient to reproduce several interesting aspects of the spin-orbit

dynamics of tidally-evolving bodies (see e.g., applications made in Ferraz-Mello 2015 and

Gomes et al. 2019). However, the first approximation of the constant rotation rate is not

self-consistent and may lead to an underestimation of the amplitude of oscillation of the

rotation rate of stiff bodies around synchronous motions.

In the work of Folonier et al. (2018), the development of the creep tide theory for the

homogeneous body case was revisited. The parametric approach presented in such work

consistently considers the rotation rate evolution of the tidally deformed body from the

first steps of the development of the theory. In such framework, the resulting equilibrium

figure of the tidally deformed body due to the dynamic equilibrium tide is given by a

triaxial ellipsoid, the shape, orientation and rotation of which are unknown parameters to

be determined. The resulting figure of the tidally deformed body is obtained by solving

four first-order ordinary differential equations. Additionally to the fact that the parametric

approach presented in Folonier et al. (2018) allows a simpler development of the creep

tide equations, it also naturally leads to an easier way to study the resulting equilibrium

figure of the tidally deformed body. In what concerns the results obtained employing the

parametric approach, Folonier et al. (2018) verified that considering the rotation rate as

a variable from the first steps of the development of the theory leads to larger amplitudes

of oscillation of the rotation rate around the synchronous attractor for bodies with large

viscosity values. This is the case of bodies like super-Earths and planetary satellites (see

Ferraz-Mello 2013, Table 1).

In this chapter, we will revisit the developments of the creep tide theory presented

in Folonier et al. (2018) and present the equations necessary to study the spin-orbit and

shape evolution of a given system.
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2.2 The static equilibrium tide

The basis of the static tide is the following: We consider a homogeneous extended

body (hereafter the primary) of mass m under the action of a tidal potential due to a

second body (hereafter the companion) of mass M situated in its neighborhood, in the

equatorial plane of the primary1. The equilibrium figure of the primary under the action

of (i) the tidal potential and (ii) the body’s rotation may be approximated by a triaxial

ellipsoid of surface equation ρ = ρ(θ̂, ϕ̂, t), where θ̂ and ϕ̂ correspond to the co-latitude and

longitude w.r.t the center of gravity of the primary. Additionally, ρ is the distance between

the point on the surface of the ellipsoid and the center of gravity. The equation for the

equilibrium surface of the body can be completely defined by two flattening coefficients:

the equatorial prolateness ερ and the polar oblateness εz. Their expressions are given by

(see e.g., Chandrasekhar 1969; Folonier et al. 2015 and references therein)

ερ =
15

4

(
M

m

)(
Re

r

)3

, (2.1)

and

εz =
5Ω2R3

e

Gm
+
ερ
2
. (2.2)

In Eqs. (2.1) and (2.2), the symbols G, Re and r correspond to the gravitational cons-

tant, the equatorial radius2 of the primary and the instantaneous distance between the

primary and the companion, respectively.

To obtain the expression for ρ in terms of the flattenings, let us first remind the equation

for a generic triaxial ellipsoid. With respect to the principal axes, such equation is given

by

X2

a2
+
Y 2

b2
+
Z2

c2
= 1, (2.3)

with a > b > c.

To bring the system whose axes are the principal axes into the adopted system of refe-

rence (the latter being the system where the bulge instantaneously follows the movement

1 We will assume that the companion is always in the equatorial plane of the primary. Such approxi-

mation is commonly referred to as the coplanar case.
2 The equatorial radius of the primary is not constant, but varies with the value of εz, as it will be

discussed in a forthcoming section.
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Figure 2.1: Equatorial section of the equilibrium figure corresponding to the static tide.

Figure partially adapted from Folonier et al. (2018). The angles ϕ and ϕ̂ are the longitudes

w.r.t a fixed reference system, indicated by O. As it can be seen, in the case of the static

tide, the tidal bulge always points towards the point-mass companion.

of the companion in the equatorial plane), we need to perform a rotation around the Z

axis. The coordinates of a point on the surface of the body, in such a reference system,

are given by (x, y, z) = (ρ sin θ̂ cos ϕ̂F , ρ sin θ̂ sin ϕ̂F , ρ cos θ̂). Considering that $ is the

longitude of the pericenter and v is the true anomaly of the companion, the angle between

the systems (X, Y, Z) and (x, y, z) is $ + v (where $ is counted from the origin fixed in

the rotating body). Thus, we have (see Ferraz-Mello 2015, Online Supplement for a more

detailed calculation in terms of the rotation matrix)

X = ρ sin θ̂ cos(ϕ̂− ω − v),

Y = ρ sin θ̂ sin(ϕ̂− ω − v),

Z = ρ cos θ̂. (2.4)

Substituting Eqs. (2.4) in Eq. (2.3) and using the expressions linking the semi-major

axes of the ellipsoid to the flattenings, given by A = Re

(
1 +

1

2
ερ

)
, B = Re

(
1− 1

2
ερ

)
and C = Re(1− εz), we obtain

ρ(θ̂, ϕ̂, t) = Re

[
1 +

1

2
ερ sin2 θ̂ cos(2ϕ̂− 2ω − 2v)− εz cos2 θ̂

]
. (2.5)

An illustration of the geometrical elements of the triaxial ellipsoid corresponding to

Eq. (2.5) is given in Fig. 2.1.
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At this point, it is worth mentioning that, to obtain the Eq. (2.5), we considered the

Taylor expansion (1 + ε)α ≈ 1 + αε, which is sufficient for ε � 1 (ε corresponds to the

flattenings).

2.3 The dynamic equilibrium tide

In the previous section, we derived the equation for the equilibrium surface of the

primary considering that its viscosity is zero. In such case, the tidal bulge always points

towards the companion and the flattenings of the primary are well known in terms of

the physical and spatial parameters of the two-body system. If the primary’s viscosity is

non-zero (which corresponds to the dynamic equilibrium tide), we have to consider that

the response of the primary to the movement of the companion is not instantaneous, but

delayed.

There are several ways to include the delay of the primary’s figure on the tidal theory.

In the creep tide theory, the inclusion of the effect of the viscosity is made by employing

the Navier-Stokes equation.

2.3.1 The Navier Stokes equation approach

In this section, we briefly present the main form of the Navier-Stokes equation for an

incompressible fluid (i.e., a fluid with constant density d) with constant viscosity η. The

equation reads (see e.g., Happel and Brenner 1983, Chapter 2 and references therein)

d

(
∂~v

∂t
+ ~v · ∇~v

)
︸ ︷︷ ︸

inertia terms

= −∇p+ η∇2~v + d~F , (2.6)

where p is the hydrostatic pressure the fluid would be supporting if it were at rest at its

local density, ~F is the external force vector exerted on the fluid per unit mass and ~v is the

fluid velocity vector.

One of the most complicated problems when solving the Navier-Stokes in the general

case of an arbitrary flow is that of turbulence. The Navier-Stokes equation as it is written

in Eq. (2.6) is complicated to solve and, often, assumptions regarding the nature of the flow

have to be made. In the case of the creep tide theory, we consider the so-called Stokes flow

(also called the creeping motion). Such approximation consists on completely neglecting
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the inertial terms in Eq. (2.6)3. Additionally, we omit the external force term since we are

studying the immediate neighborhood of the equilibrium surface. In such case, the stress

in that neighborhood is already considered in the pressure term. The aforementioned

approximations allow us to write the creeping motion equation as

∇p = η∇2~v. (2.7)

2.3.2 From the creeping motion to the creep equation

The Eq. (2.7) is written in terms of the fluid velocity vector. In the creep tide theory, we

study only the radial displacement of the body w.r.t the equilibrium position. Additionally,

we assume that the radial component of the velocity vector (namely, vr) is independent of

the azimuthal variables. In such specific case, we can rewrite the equation as

∂2vr
∂ζ2

+
2

ζ

∂vr
∂ζ
− 2vr

ζ2
=
∇p
η
, (2.8)

where ζ is the surface equation of the body considering the dynamic equilibrim tide.

The solution to the second-order differential equation shown in Eq. (2.8) can be written

as

vr(ζ) = C1ζ +
C2

ζ2
+
∇p
4η
ζ2. (2.9)

The constants C1 and C2 require two boundary conditions to be fully determined. The

adopted conditions are:

• The velocity vanishes in the equilibrium position, namely vr(ζ = ρ) = 0;

• The approximation is linear, thus v′′r ≡ 0.

Applying the two aforementioned conditions in Eq. (2.9) allows us to obtain that C1 =

−ρ∇p
6η

and C2 = −ρ
4∇p
12η

. Linearizing the equation in the neighbourhood of ζ = ρ allows

us to write

3 Such approximation is valid for Low-Reynolds-number flows, that is, when the role of the viscosity

term is much larger than the role of inertial forces to describe the motion of the fluid. For more details,

see discussions in Happel and Brenner (1983), Chapter 2, Section 2.6.
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ζ̇ =
3gm

8πR2η
(ρ− ζ), (2.10)

where g is the surface gravity of the body and R its mean radius.

The term multiplying (ρ − ζ) in Eq. (2.10) is normally referred to as the relaxation

factor γ. Thus, we have

γ =
3gm

8πR2η
. (2.11)

The creep equation can finally be written in a compact form as

ζ̇ = γ(ρ− ζ). (2.12)

We can therefore define the creep equation as the equation allowing for the inclusion

of the effect of viscosity on the creep tide theory, neglecting transversal displacements.

It is the result of employing a linear approximation of the Navier-Stokes equation for a

Low-Reynolds-number flow (i.e., in the case where viscous forces within the fluid are much

stronger than inertial forces).

2.4 The parametric equations (Folonier et al., 2018)

The creep equation presented in Eq. (2.12) is a first-order ordinary differential equation

(hereafter ODE) the solution of which allows us to determine the instantaneous equilibrium

figure equation of the primary, considering the action of the dynamic equilibrium tide.

We will proceed as in Folonier et al. (2018) and write the instantaneous equilibrium

figure of the primary ζ as the equation of a triaxial ellipsoid with unknown equatorial

prolateness and polar oblateness coefficients (namely, Eρ and Ez) and a deviation angle of

the tidal bulge (namely, δ) with respect to the position of the companion. Fig. 2.2 shows

the geometrical elements corresponding to the dynamic equilibrium tide case.

The equation of the resulting triaxial ellipsoid can thus be written as

ζ(θ̂, ϕ̂, t) = R

[
1 +

1

2
Eρ sin2 θ̂ cos(2ϕ̂− 2ϕB) + Ez

(
1

3
− cos2 θ̂

)]
. (2.13)

At this point, it is worth mentioning an important difference between Eqs. (2.5) and

(2.13). We employed the mean radius R instead of the equatorial radius Re due to the
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Figure 2.2: Equatorial section of the equilibrium figure corresponding to the dynamic tide.

Figure partially adapted from Folonier et al. (2018). The angle δ corresponds to the deviation

angle between the tidal bulge and the point-mass companion, and ζ corresponds to the

equation of a point on the surface of the body considering the dynamic tide.

fact that, when the equatorial prolateness varies due to a variation in the distance of the

primary to the companion, the polar flattening and Re vary according to Re = R(1 + εz/3)

(see discussions in Folonier et al. 2018)4.

To obtain the evolution of the flattenings of the resulting ellipsoid as well as the devia-

tion angle, we can substitute Eq. (2.13) in Eq. (2.12). Decomposing the resulting equation

and matching the terms with the same trigonometric arguments allows us to write the

creep equation as three first-order ODEs, which are the so-called parametric equations

(Folonier et al., 2018). The calculations are straightforward and the resulting ODEs are

given by

δ̇ = Ω− ϕ̇− γερ
2Eρ

sin 2δ, (2.14)

Ėρ = γ(ερ cos 2δ − Eρ), (2.15)

Ėz = γ(εz − Ez). (2.16)

While the parametric equations allow us to study the time evolution of the primary’s

4 To obtain the expression for ρ in terms of the mean radius, it suffices to change the sign of the last

term on the right hand side of Eq. (2.5) and replace the coefficient multiplying εz from cos2 θ̂ to 1
3 − cos2 θ̂.



Section 2.5. The tidal forces and torques 33

shape and orientation, they are not complete in the sense that the time dependence of

the rotation rate is unknown. To consider a complete and self-consistent treatment of the

spin-orbit and shape evolution, we need the equations for the forces (which allow us to

study the orbital evolution of the system) and the torques (which allow us to study the

rotational evolution of the primary). Such calculations will be carried out in the next

section.

2.5 The tidal forces and torques

To obtain the equation for the tidal forces, we first write the equation for the potential

caused by the triaxial ellipsoid in terms of the flattenings and the tidal bulge angle. The

expression for the disturbing potential (namely, δU) reads (see Folonier et al. 2018; Ferraz-

Mello et al. 2020)

δU = −GC
2r3
Eρ
(
3 cos2 ΨB − 1

)
− GC

2r3

(
Ez −

1

2
Eρ
)
, (2.17)

where ΨB is the angle between the direction of the point where the potential is taken and

the direction of the bulge vertex.

The calculation of the gradient of the disturbing potential allows us to write the force

expression acting on the companion through ~F = −M∇δU . Since we are dealing with

the case where the companion lies always on the equatorial plane of the primary, we have

θ̂ = π/2. In such case, the force components can be written as

F1 = −3GMCEρ
2r4

(3 cos2 δ − 1)− 3GMC

2r4

(
Ez −

1

2
Eρ
)
, (2.18)

F2 = 0, (2.19)

F3 =
3GMCEρ

2r4
sin 2δ. (2.20)

The group of Eqs. (2.18)-(2.20) can be used to study the orbital evolution of the system.

They also allow us to compute the torque expression. The calculation is straightforward

and we obtain

M = rF3 ẑ =
3GMCEρ

2r3
sin 2δ ẑ. (2.21)
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The reaction of the torque acting on the companion is the torque dictating the rotational

evolution of the primary. The resulting equation for the rotational evolution of the primary

is, thus

Ω̇ = −3GMEρ
2r3

sin 2δ. (2.22)

It is worth mentioning that we neglected the contribution of the variation of the moment

of inertia (namely, the term ĊΩ) of the primary to obtain Eq. (2.22). Such contribution is

relatively small and can be neglected in most of the applications to the planetary systems

discovered so far (see also discussions in Folonier et al. 2018).

The equations presented in this section were computed with no assumptions on the

relative masses of the bodies. Thus, the combined action of the tides of both bodies can

be computed by inverting the roles of the primary and the companion (see e.g., discussions

in Ferraz-Mello et al. 2008; Ferraz-Mello 2015).
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Rotation and figure evolution in the creep tide theory:

a new approach and application to Mercury

The following article addresses an implementation of the creep tide theory (Folonier

et al., 2018) to study the rotation and figure evolution of a homogeneous non-rigid Mercury.

The approach allows for arbitrary eccentricity values and a straightforward formalism to

study the rotation, orientation of the tidal bulge and shape of the planet. We focus our

analysis on the study of the 3/2 and 2/1 spin-orbit resonances, since Mercury is currently in

the 3/2 spin-orbit resonance. We also study of the range of possible values of the relaxation

factor of Mercury which could lead to its current spin configuration (i.e., a 3/2 spin-orbit

resonant state) considering that its eccentricity was never below e = 0.1 (Laskar, 1996).

Finally, we discuss some consequences of our results regarding the estimation of Mercury’s

uniform viscosity coefficient to its shape evolution. We compare the predictions of the

creep tide theory with recent data coming from the MESSENGER observations (Perry

et al., 2015).

The results of the article allow us to conclude that, for any non-synchronous spin-orbit

resonant states, the tidal lag angle for a non-rigid homogeneous Mercury (namely, δ) always

circulates with a period which depends on the given spin-orbit resonance. Moreover, the

angle ϕB = ϕ + δ (where ϕ is the true anomaly of Mercury) circulates with the same

period of the rotation rate, for low values of the relaxation factor (γ). For high values of

γ, δ oscillates around 0, where the amplitude of the oscillation depends on the value of the

relaxation factor.

In what concerns the analysis of Mercury’s relaxation factor value leading to its current

spin-orbit configuration, we have concluded that the relaxation factor is such that 4.8 ×
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10−9 s−1 ≤ γ ≤ 4.8×10−8 s−1. This range of values of the relaxation factor corresponds to

a range of values of the uniform viscosity coefficient of 5.1×1017 Pa s ≤ η ≤ 5.0×1018 Pa s.

The range of values for γ (and, consequently, for η) were determined by considering three

hypothesys: (i) Mercury’s eccentricity was never below 0.1 (Laskar, 1996), (ii) for e = 0.1,

Mercury cannot remain trapped in the 2/1 spin-orbit resonance and (iii) for e = 0.1

Mercury remains trapped in the 3/2 spin-orbit resonance (otherwise the planet would

escape to the synchronous rotation rate configuration).

Lastly, the predictions for the shape and orientation evolution of Mercury in the frame of

the creep tide theory allowed us to conclude that the equatorial prolateness (Eρ) and polar

oblateness (Ez) of Mercury are of the order Eρ = 1.1 × 10−6 and Ez = 2.2 × 10−6. These

values are in agreement with estimations performed using the Darwin-Kaula expansion

method presented in Matsuyama and Nimmo (2009). According to MESSENGER data,

however, the observations indicate that the actual values of Mercury’s flattenings are of

the order Eρ = 5.5 × 10−4 and Ez = 9.6 × 10−4. These values are approximately two

orders of magnitude larger than the values predicted by the creep tide theory or any other

equilibrium tide theory. Thus, the results suggest the existence of a fossil component which

may be responsible for Mercury’s current shape.
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1 Introduction

It is known that Mercury’s current rotation is in a 3/2 spin–orbit resonance with its orbital
motion. This means that it rotates on its axis three times for every two revolutions made
around the Sun. The scenario used to explain Mercury’s current rotational configuration by
means of tidal interactions usually involves the assumption that Mercury was initially in
a fast rotating state and then evolved under the action of tidal interactions which slowed
down the rotation of Mercury until it reached the 3/2 spin–orbit resonance (see e.g Noyelles
et al. 2014). The tidal models used to evaluate the torque that slowed down the rotation of
Mercury are usually based on classical tidal theories. In these works, the existence of an
additional torque arising from a permanent equatorial asymmetry is generally assumed to
capture Mercury’s rotation in the 3/2 spin–orbit resonance (see e.g Bartuccelli et al. 2017).

Recently, Ferraz-Mello (2012, 2013, 2014, 2015a) proposed a theory of tidal interactions
based on an approximate solution of the Navier–Stokes equation for a flux that has a low
Reynolds number. Considering this theory, the equatorial asymmetry ensues as a consequence
of tidal interactions and the capture in spin–orbit resonances can be explained without the
assumption of an extra torque due to a permanent equatorial asymmetry of the body. This
result was also reported by Makarov and Efroimsky (2013) and confirmed by Correia et al.
(2014) with a modeling based on a Maxwell viscoelastic rheology. In the framework of the
creep tide theory, tidal interactions alone may be responsible for the evolution of the spin of
a non-rigid body and whether or not the body is trapped in a spin–orbit resonance depends
on its eccentricity and relaxation factor γ .

In this work, we study the rotational evolution of a homogeneous non-rigid Mercury in
the frame of the creep tide theory of Ferraz-Mello (2012, 2013) using the decomposition
of the creep equation in three separated equations, as proposed in Folonier et al. (2018).
These new equations are virtually equivalent to the equations used in studies employing
the Maxwell viscoelastic model (Correia et al. 2014), and they allow for a self-consistent
version of the creep tide theory to be constructed. Their simplicity also allows us to use some
analytical approximations. We confirm that the capture in spin–orbit resonances depends on
γ , the eccentricity e and the initial value of the rotation rate. The evolution of the equilibrium
ellipsoid is discussed for the 3/2 and 2/1 spin–orbit resonances. (The synchronous case was
already studied in Folonier et al. (2018)). We calculate the range of values of the relaxation
factor of a non-rigid homogeneous Mercury for which it would currently be in the 3/2 spin–
orbit resonance, provided that it was initially in a fast rotating prograde configuration and
that its eccentricity minimum value was never below e = 0.1. We do not make more specific
assumptions since there are no observational clues to support them.

The report starts with a brief recapitulation of the new formulation of the creep tide theory
(Folonier et al. 2018). The differential equations ruling the shape and spin–orbit dynamics in
this framework are deduced in Sect. 2. In Sect. 3, we present the solution of such equations
corresponding to the approximation where �̇ ≈ 0 . In Sect. 4, we study the full model,
characterized by the numerical integration of the equations, and use Mercury’s physical and
orbital parameters to study the rotational dynamics and evolution of its figure. Section 5
is dedicated to an application of the equations to the determination of the constraints for
the relaxation factor of a body for which the rotational configuration is the 3/2 spin–orbit
resonance. We apply our analysis to the case of Mercury’s rotation, since this is the only
body whose rotation is known to be trapped in a 3/2 spin–orbit resonance. In Sect. 6, we
discuss Mercury’s current figure evolution in the frame of the creep tide theory and compare
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our results to the ones obtained from the MESSENGER mission (Perry et al. 2015). The
conclusions are given in Sect. 7.

2 Creep tide theory: Folonier equations

Let us consider that an extended body m of mass m (primary) experiences the gravitational
potential from a point mass body M of mass M (companion). The combined action of the
centrifugal potential caused by the primary’s rotation and the gravitational potential gener-
ated by the companion’s gravitational attraction causes a deformation on the primary. The
equilibrium surface is given by a triaxial ellipsoid (to first order in the flattenings, see Chan-
drasekhar 1969 and Folonier et al. 2015). In the case of an inviscid fluid (also known as static
case), the equilibrium figure of the triaxial ellipsoid is given by

ρ(̂θ, ϕ̂, t) = R

[

1 + 1

2
ερ sin

2
̂θ cos(2ϕ̂ − 2ϕ) + εz

(

1

3
− cos2 ̂θ

)]

, (1)

with ̂θ and ϕ̂ being the colatitude and longitude of a generic point on the surface of the
equilibrium ellipsoid, respectively. R and ϕ are the mean radius of the primary and the true
anomaly of the companion. The coefficients ερ and εz are the equatorial prolateness and polar
oblateness of the resulting ellipsoid, respectively, which depend on the physical and orbital
parameters of the system through

ερ = 15M

4m

(

R

a

)3 (a

r

)3 ≡ ε̄ρ

(a

r

)3
, (2)

εz = ερ

2
+ 5

4

�2R3

Gm
(3)

with G being the gravitational constant, � the rotation rate. In the general case, where we
have a fluid with a given viscosity η, the equilibrium figure of the resulting ellipsoid is given
by ζ(̂θ, ϕ̂, t), which is the solution of the creep equation

ζ̇ = γ (ρ − ζ ), (4)

where the relaxation factor γ is inversely proportional to the uniform viscosity coefficient η
(see Ferraz-Mello 2013, Eq. (3)). Explicitly, we have

γ = wR

2η
, (5)

where w is the specific weight on the surface of the body.
Folonier et al. (2018) assumed that the solution of the creep equationmay be approximated

by a generic triaxial ellipsoid with unknown equatorial prolateness, polar oblateness and
deviation angle w.r.t the companion (namely, Eρ , Ez and δ), whose equation is

ζ(̂θ, ϕ̂, t) = R

[

1 + 1

2
Eρ sin

2
̂θ cos(2ϕ̂ − 2ϕ − 2δ) + Ez

(

1

3
− cos2 ̂θ

)]

. (6)

Substituting Eq. (6) into Eq. (4) and comparing the terms with the same trigonometrical
arguments of ϕ̂ and ̂θ , we obtain three differential equations to be solved, namely

δ̇ = � − ϕ̇ − γ ερ

2Eρ

sin 2δ, (7)
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Ėρ = γ (ερ cos 2δ − Eρ), (8)

Ėz = γ (εz − Ez). (9)

From the expression for the torque at the companion generated by the primary, we can
calculate its reaction ruling the rotational evolution of the primary. The calculations are
straightforward (see Folonier et al. 2018). The result is

�̇ = −3GM

2r3
Eρ sin 2δ. (10)

Equations (7)–(10) rule the evolution of the orientation, shape and rotation of the body. These
equations can be integrated numerically to the desired precision.

2.1 Change of variables

The system of equations presented in the previous section can be simplified if we consider a
transformation given by

x = Eρ cos 2δ, (11)

y = Eρ sin 2δ, (12)

where

Eρ = Eρ

ε̄ρ

. (13)

The differential equations involving x and y can be easily obtained directly from the above
equations. The calculations are straightforward, and the resulting differential equations are

ẋ = γ
(a

r

)3 − γ x − y(2� − 2ϕ̇), (14)

ẏ = −γ y + x(2� − 2ϕ̇), (15)

�̇ = −3GM

2r3
ε̄ρ y. (16)

It is worth mentioning that the above system of differential equations cannot be solved
analytically in the general eccentric case. The terms carrying ϕ̇ and (a/r)3 are solutions of the
Keplerian motion. Another interesting characteristic of the system of differential equations is
that the equation for Ez [see Eq. (9)] is decoupled from the other three differential equations.
Thus, it can be treated separately.

3 Simplified approach with constant rotation

In this section, we discuss a simplification of the equations of the new formulation of the creep
tide theory. In application to Mercury, we see in Fig. 1 that the variation of the rotation rate is
small for short time intervals for both regimes of the relaxation factor γ (γ � n and γ � n,
where n is the orbital mean motion). Thus, for short time intervals, we can approximate the
rotation rate to a constant value. The rotation is rapidly driven to a quasi-steady state. Figure 2
shows the solution of the differential equations for γ = 4×10−8 s−1. The figure shows both
the transient and the quasi-steady state.

In order to understand the dynamics associated with the quasi-steady state reached after
the transient, we consider initially the simplification in our equations that result when we
assume a constant rotation.
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Fig. 1 Numerical integration of Eqs. (7)–(10) for a homogeneous non-rigidMercury considering two different
values of γ /n as indicated in the figure. The eccentricity is e = 0.2. In both regimes (γ � n on the left and
γ � n on the right), we see that the value of the rotation rate changes slowly, in a timescale much larger than
the orbital period of Mercury of 88 days

Fig. 2 Plot of the solutions
considering e = 0.15,
�/n = 2.45 and
γ /n = 4.83 × 10−2. After the
transient (black curve in the plot),
the solution is trapped in a
quasi-stationary closed curve (red
curve in the plot)

To solve the system of differential equations for x and y, we define the complex variable

Z = x + iy, (17)

and rewrite the equations for ẋ and ẏ in the simple form

Ż + [γ − i(2� − 2ϕ̇)]Z = γ
(a

r

)3
. (18)

The general solution of Eq. (18) is (see Arfken 2005)

Z(t) = γ
∫

e
∫

f (t)dt
( a
r

)3 dt + c

e
∫

f (t)dt
, (19)

where

f (t) = γ − i(2� − 2ϕ̇).
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The integration is straightforward and we use the expansions of the Keplerian motion in
Fourier series (see Ferraz-Mello 2015a. Online Supplement):

(a

r

)3
e2iϕ =

∑

k∈Z
E2,2−ke

ik�, (20)

where E2, j are Cayley coefficients and � is the mean anomaly of the companion.
The term carrying the constant c in Eq. (19) is transient, and it can be neglected. It carries

an exponential term and decreases with time tending to zero. The term of Z(t) related to the
quasi-steady solution is

Z(t) = γ

[

∑

k∈Z
E2,2−k

∫

eγ t+i(k�−2ϕ̂)dt

]

e−γ t+2i(ϕ̂−ϕ). (21)

The calculation is trivial and the resulting expression for Z(t) reads

Z(t) = γ
∑

k∈Z

E2,2−k

γ + i(kn − 2�)
ei(k�−2ϕ). (22)

To obtain x and y, we just need to use the identity Z = x + iy and identify the real and
imaginary parts of Z(t). The resulting expressions are

x(t) =
∑

k∈Z

γ E2,2−k

γ 2 + (2� − kn)2
[γ cos(k� − 2ϕ) − (2� − kn) sin(k� − 2ϕ)], (23)

y(t) =
∑

k∈Z

γ E2,2−k

γ 2 + (2� − kn)2
[γ sin(k� − 2ϕ) + (2� − kn) cos(k� − 2ϕ)]. (24)

From the expressions for x and y thus obtained, we can calculate the corresponding
variation in the rotation rate. From Eqs. (16) to (24), we obtain for �̇ that

�̇ = −3GM ε̄ρ

2a3
∑

k∈Z

γ E2,k
√

γ 2 + (ν + kn)2

⎧

⎨

⎩

∑

j∈Z
E2,k+ j sin

[

j� + arctan

(

ν + kn

γ

)]

⎫

⎬

⎭

,

(25)
where ν = 2� − 2n is the semidiurnal frequency.

Equation (25) is exactly the sameexpression presented inEq. (36) of Ferraz-Mello (2015a).
Thus, we see that the old creep tide theory (Ferraz-Mello 2013, 2015a) and the new version
of the theory reproduce the same results if we initially consider � ≈const. and then obtain
�(t) from the torque expression.1 However, we emphasize that the above construction of
the solution for constant � is not self-consistent, since we firstly assumed a constant � to
obtain x and y and then obtained �̇ from the torque expression. As discussed in Folonier
et al. (2018), the oscillations in � are significant when studying the energy dissipation in
synchronous stiff bodies (see also Efroimsky 2018a, b).

1 It is worth noting that this equation is also the same equation as Eq. (39) of Correia et al. (2014) notwith-
standing the differences of the Maxwell viscoelastic model adopted by those authors and the creep tide model.
This coincidence confirms the fact that the addition of an elastic term to the creep does not change the torque
acting on the system, as discussed in Ferraz-Mello (2012, 2013).
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Fig. 3 Deviation angle δ (on the left) and normalized equatorial prolateness Eρ (on the right) in the circular
case for three different values of �/n. We have �/n = 1.5, 2 and 5 on the black, red and blue curves,
respectively

3.1 Circular case

For the sake of showing in a simpler way some of the consequences of the current simplified
approach, we turn our attention to the circular case. In this case, we have E2,0 = 1 and all
the other Cayley coefficients equal 0. Then, the solutions for x and y become

x(t) = γ 2

γ 2 + ν2
, (26)

y(t) = γ ν

γ 2 + ν2
. (27)

For δ and Eρ , we obtain

δ = 1

2
arctan

(

ν

γ

)

, Eρ = γ
√

γ 2 + ν2
= cos 2δ. (28)

Figure 3 shows the functions δ and Eρ for the circular case considering different values
of �/n. We see that for γ � n, the deviation angle δ is 45◦ and Eρ is small, of the order
10−4. As γ increases, the value of δ decreases until it reaches 0◦. while Eρ increases until
Eρ = 1.

Figure 4 shows a comparison of the circular case and the eccentric case. In the circular
case, the trajectory in the diagram is given by a single point in each panel. The eccentricity
introduces forced oscillations around the circular case whose amplitude increases when the
eccentricity increases.

3.2 Spin–orbit resonances

It was already shown by Makarov and Efroimsky (2013) that, for solid planets and moons
(which, in the frame of the creep tide theory, are characterized by a small value of γ , typically
γ � n), there may be several stationary values of the rotation rate other than the synchronous
state. These stationary non-synchronous configurations of the rotation are the spin–orbit
resonances.

The simplified approach of the new version of the creep tide theory explains how spin–
orbit resonances ensue in a given system. For this sake, we calculate the average of �̇ (see
Eq. 25) which gives
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Fig. 4 Solution of the simplified equations for γ /n = 0.01 in the circular case (corresponding to the center
of the red circle) and two eccentric cases, with e = 0.1 (blue) and e = 0.2 (black)

〈�̇〉 = −3GM ε̄ρ

2a3
∑

k∈Z

γ (ν + kn)E2
2,k

γ 2 + (ν + kn)2
. (29)

When the rotation is trapped in a spin–orbit resonance, we have 〈�̇〉 = 0. However, in
general, the sum of Eq. (29) is not exactly 0. The equilibrium does not occur at the exact
commensurability, but in a neighborhood of it. For a given commensurability, there is a term
in the sum of the terms that corresponds to ν + kn ≈ 0. We call the index k related to such
term as k′. Then, the condition for a spin–orbit resonance to be effective becomes

γ (ν + k′n)E2
2,k′

γ 2 + (ν + k′n)2
= −

∑

k∈Z,k �=k′

γ (ν + kn)E2
2,k

γ 2 + (ν + kn)2
. (30)

In the right-hand side of the above equation, we can consider the exact commensurability
for all the terms in the sum, that is ν = −k′n. Then, taking into account that the term with
k = k′ equals 0, we can write

γ (ν + k′n)E2
2,k′

γ 2 + (ν + k′n)2
= −

∑

k∈Z

γ (−k′n + kn)E2
2,k

γ 2 + (−k′n + kn)2
. (31)

The coefficient of E2
2,k′ is of the form (x + 1/x)−1 and, thus, its maximum value (in

absolute value) is attained for x = ±1 or, in this case, when γ = |ν + k′n|, for which
the coefficient equals 1/2. Then, the left-hand side term is never larger than E2

2,k′/2. As a
consequence, the above equation has a solution only if
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E2
2,k′

2
≥

∣

∣

∣

∣

∣

∑

k∈Z

γ n(k − k′)E2
2,k

γ 2 + (k − k′)2n2

∣

∣

∣

∣

∣

. (32)

For each spin–orbit resonance associated to a given k′ ≈ −ν/n, the equality on the above
equation gives the relation between the minimum eccentricity and the relaxation factor for
which the possibility of capture in the given spin–orbit resonance exists. (That is, the rotation
maybe trapped in the resonance as�/n approaches the value corresponding to the resonance.)
It is important tomention that Eq. (32) is the same as the one presented inCorreia et al. (2014).

One application of Eq. (32) is that we can obtain an analytic relation between theminimum
eccentricity for which a given spin–orbit resonance can exist and the relaxation factor γ .
For the 3/2 spin–orbit resonance (corresponding to k′ = −1), we can expand the Cayley
coefficients E2

2,k to order e4 and obtain a quartic equation to be solved in e. Since there are

only even powers of e (we have E2
2,k only), it can be reduced to a quadratic equation. The

only real root gives us the relation between emin and γ . The calculations are straightforward
and the relation for the 3/2 spin–orbit resonance is

e(3/2)
min = 2

√
2

7

(γ

n

)1/2 − 27
√
2

2401

(γ

n

)3/2 + O(γ 5/2). (33)

In a similar way, for the 2/1 spin–orbit resonance, we obtain

e(2/1)
min =

√

2

17

(γ

n

)1/4 + 59

51
√
34

(γ

n

)3/4 + O(γ 5/4). (34)

It is worth mentioning that the lower the value of k′ (corresponding to higher-order spin–orbit
resonances), the higher is the order of expansion needed for the Cayley coefficients. For the
7/2 spin–orbit resonance, for instance, we would need at least an expansion of order e10.

4 Completemodel: the neighborhood of the resonances

In this section, we study the evolution of a non-rigid homogeneous body for initial values of
the rotation rate close to two spin–orbit resonances: the 3/2 and 2/1 spin–orbit resonances.

4.1 The 3/2 spin–orbit resonance

The 3/2 spin–orbit resonance is the last one encountered by a tidally evolving body before
it reaches synchronization. Fig. 5 shows the evolution of the shape, orientation and rotation
of a non-rigid homogeneous Mercury when the rotation already evolved and reached the 3/2
spin–orbit resonant configuration.

The numerical results presented in Fig. 5 show that once the rotation is trapped in the
3/2 spin–orbit resonance, the equatorial prolateness and polar oblateness suffer only small
oscillations around ameanvalue. The samebehavior holds for the rotation rate�/n. However,
for the orientation of the equatorial tidal bulge δ, we observe that the behavior is given by
a non-uniform circulation with a period that equals the orbital period of Mercury. Thus, it
behaves almost like a rigid body regarding the orientation of the equatorial tidal bulge. This
can be seen if we consider Eq. (7) and make γ = 0 (corresponding to a rigid body). In this
case, the differential equation becomes

δ̇ = � − ϕ̇, (35)
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Fig. 5 Evolution of the lag (δ), flattenings (Eρ and Ez ) and rotation velocity (�) of the resulting ellipsoid for
the 3/2 spin–orbit resonance considering a homogeneous non-rigid Mercury with eccentricity e = 0.1. In this
case, we adopted γ /n = 0.01 (corresponding to γ = 8.27 × 10−9 s−1)

the solution of which shows that δ circulates with a period

Tδ = 2π

� − ϕ̇
. (36)

Since we have, in the 3/2 spin–orbit resonance,�/n ≈ 3/2, it follows that Tδ = 4π/n. Thus,
in the case of a rigid body in the 3/2 spin–orbit resonance, δ circulates with a period equal to
twice the orbital period of Mercury. Fig. 5 shows the evolution of the shape, orientation and
rotation of the body when γ /n = 0.01 for the 3/2 spin–orbit resonance. For smaller values
of γ /n, the mean value of � in the 3/2 spin–orbit resonance is higher, and the amplitudes of
the oscillations become smaller.

Figure 6 shows the evolution of δ in the neighborhood of the 3/2 spin–orbit resonance
for four different values of γ /n. The behavior of δ strongly depends on the value of γ /n.
As γ increases, there is a critical point where the regime of δ changes from circulation to
oscillation. The transition between the two regimes can be seen comparing the blue and the
red curves in the figure. The results in Fig. 6 show that the body behaves almost like a rigid
body even for values of γ /n for which the body is not necessarily trapped in the spin–orbit
resonance. It is worth emphasizing that the 3/2 spin–orbit resonance is the case of Mercury’s
rotational configuration.

Figure 7 shows the geometrical configuration of the ellipsoidal figure of the body, with
bulges indicated by black areas for different times. From the figure, it can be seen that it
behaves almost like a rigid body when it is trapped in the 3/2 spin–orbit resonance. For every
2 orbital periods, δ circulates from 0 to 2π .

123



Rotation and figure evolution in the creep tide theory Page 11 of 20    56 

Fig. 6 Evolution of δ in the
neighborhood of the condition
�/n = 3/2. The γ /n factor
varies in each curve in the
following way: γ /n = 0.251,
0.316, 0.398 and 0.501 in the
black, red, blue and green curves,
respectively. In all cases, the
eccentricity is fixed as e = 0.1.
The behavior of δ depends not
only on the value of �/n, but
also on the ratio γ /n. We see
from the red and blue curves that
the limit value for which δ

circulates or oscillates lies
between 0.398 and 0.316

Fig. 7 Geometrical configuration
of the resulting ellipsoid of
Mercury in the case of the 3/2
spin–orbit resonance when γ is
very small. In this case, the body
behaves like a rigid body. The
configuration at different times is
shown along with the respective
time on the side of the black
areas. After one orbital
revolution, the orientation of the
ellipsoid is reversed (i.e., the
orientation of the ellipsoid is
rotated by 540 deg.). The arrows
indicate the chronological
sequence of the figures

4.2 The 2/1 spin–orbit resonance

In this subsection, we perform a discussion similar to the one presented in the previous
subsection, but for the 2/1 spin–orbit resonance.

The results in Fig. 8 show the same qualitative features for the equatorial prolateness, polar
oblateness and rotation rate as it was done in the case of the 3/2 spin–orbit resonance. The
only additional interesting feature is that for the 2/1 spin–orbit resonance, the oscillations
in Eρ and �/n have two noticeable harmonic components. One of the components has a
period of 2π/n, while the second component has a period of π/n (cf. top graph on the right in
Fig. 8). Regarding the behavior of δ, the period of circulation in the case of the 2/1 spin–orbit
resonance is equal to the orbital period of Mercury. This result is important because, as in
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Fig. 8 Evolution of the lag (δ), flattenings (Eρ and Ez ) and rotation rate � of a non-rigid body in the 2/1
spin–orbit resonance with γ /n = 0.001 (corresponding to γ = 8.27×10−10 s−1) and e = 0.1. The behavior
of Eρ , Ez and �/n is qualitatively the same as in the 3/2 spin–orbit resonance

Fig. 9 Geometrical configuration
of the resulting ellipsoid in the
case of the 2/1 spin–orbit
resonance when γ is very small.
In this case, the body behaves like
a rigid body. As in the Fig. 7, the
arrows indicate the chronological
sequence of the figures

the case of the 3/2 spin–orbit resonance, the body behaves almost like a rigid body when
it is trapped in the spin–orbit resonance [also in agreement with Eq. (36)]. The geometrical
configuration of the body’s figure can be seen in Fig. 9. The ellipsoidal bulge rotates around
the body’s center of mass with the same period as the orbital motion w.r.t the position of the
companion (which corresponds to δ). If we considered ϕB = ϕ + δ, corresponding to an
origin in a fixed point in space, the period would be half of the orbital period.
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Fig. 10 Evolution of δ in the
neighborhood of the condition
�/n = 2. The γ /n factor is equal
to 0.1, 0.126, 0.158 and 0.3 in the
black, red, blue and green curves,
respectively. In the black curve,
the period of circulation of δ is
equal to half of the orbital period.
In the blue and red curves, the
period of circulation increases to
one orbital period and in the
green curve, δ oscillates around
45 deg

In Fig. 10, we repeat the analysis done for the 3/2 spin–orbit resonance regarding the
evolution of δ in the proximity of the resonance. We can see that even for a value of γ /n
higher than the critical value necessary for the 2/1 spin–orbit to exist, δ circulates with a
period equal to the orbital period (see black curve in Fig. 10). Thus, there is a range of values
for γ /n for which the period of circulation is equal to the orbital period. If γ /n is higher than
such range of values, the period of circulation becomes twice the orbital period, which was
the case for the 3/2 spin–orbit resonance (see red and blue curves in Fig. 10). Finally, the
green curve in Fig. 10 shows that δ oscillates around 45 deg. when γ /n is even higher than
the range for which δ circulates with a period equal to twice the orbital period. Therefore,
for the 2/1 spin–orbit resonance, there are three possible behaviors for δ that depend on the
value of γ /n.

5 Trapping into the 3/2 spin–orbit resonance

In this section, we use the same equations as Folonier et al. (2018) to study the rotational
evolution of a body that is captured in the 3/2 spin–orbit resonance as a consequence of tidal
interactions and analyze the range of values of γ able to drive the body’s rotation to this
spin–orbit configuration.

Figure 11 shows the secular variation of the quasi-steady rotation rate �QS(�/n) as a
function of the rotation rate �/n. To obtain the secular variation of the rotation rate, we
integrated Eqs. (7)–(10) with a given initial rotation rate until the rotation was captured in a
quasi-steady state. Then, for each 100 orbital periods, we calculated the difference �/n w.r.t
the previous value 100 periods before. Many aspects are presented in Fig. 11. We see that,
for γ � n, the number of possible spin–orbit resonances is larger for higher eccentricities
(compare the panels on Fig. 11). The appearance of stable points (i.e., possible spin–orbit
resonances) for larger eccentricities and low values of γ /n was already studied in Correia
et al. (2014) and Ferraz-Mello (2015a). The results presented in Fig. 11 are in agreement
with both these works.
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Fig. 11 Secular variation of the rotation rate �(�/n) as a function of the rotation rate � normalized by the
mean motion when γ /n = 10−2. When the eccentricity increases, the number of visible stable solutions also
grows, as can be seen by comparing the panels in the figure

5.1 Constraints for the relaxation factor

In order to evaluate the relaxation factor of a body whose final rotational configuration is the
3/2 spin–orbit resonance, we perform full numerical integrations of Eqs. (7)–(10) for selected
initial conditions just above the 3/2 and 2/1 spin–orbit resonances.

Figure 12 shows the rotational evolution of a non-rigid homogeneousMercury considering
two values of eccentricity and initial values of rotation rate for different values of γ . We can
see that the final equilibrium value of the rotation rate depends on all those parameters. Thus,
the value of γ must be in a range such that the current rotational configuration is obtained
considering the eccentricity variations of the body. There are two conditions thatmust be taken
into account. Firstly, the relaxation factor must be such that the body does not escape the 3/2
spin–orbit resonance when its eccentricity reaches the minimum value. Also, the body may
have passed the 2/1 spin–orbit resonance without remaining captured into it even when the
minimum eccentricity was reached. In the case of Mercury, studies on its eccentricity history
for the last 200 Myr have shown that the eccentricity oscillated between 0.1 and 0.3 (see
Laskar 1996). For e = 0.1 and by following the two criteria established just above, we obtain
5.8×10−3 ≤ γ /n ≤ 5.8×10−2, which corresponds to 4.8×10−9 s−1 ≤ γ ≤ 4.8×10−8 s−1

(using n = 8.2677 × 10−7 s−1 as it is the case of Mercury’s orbit).
Figure 13 summarizes our results for the relaxation factor of the non-rigid body whose

final rotational configuration is the 3/2 resonance. We performed numerical integrations of
Eqs. (7)–(10) for the body assuming, initially, that �/n = 2.2 for a range of γ /n between
10−1 and 10−3. We see that the only necessary information to determinate the boundary
values for the relaxation factor is the minimum eccentricity of the body. The red line in the
figure represents the minimum eccentricity for Mercury in the past 200Myr. The intersection
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Fig. 12 Evolution of the rotation rate of the body considering different values of γ (varying in uniform steps
from the blue to the black curve from the lowest to the highest values) and for two eccentricities. We have
e = 0.1 on the panels on the top and e = 0.2 on the panels on the bottom. In the top left panel, we have
γ /n between 0.07 and 0.04 (corresponding to η between 4.0× 1017 Pa s and 6.9× 1017 Pa s) from the black
to the blue curve. For the top right panel, γ /n is between 0.0059 and 0.0058 (corresponding to η between
4.9×1018 Pa s and 5.0×1018 Pa s). In the bottom left panel, γ /n varies between 0.30 and 0.15 (corresponding
to η between 9.7 × 1016 Pa s and 1.9 × 1017 Pa s). On the bottom right panel γ /n is between 0.07 and 0.05
(corresponding to η between 4.1 × 1017 Pa s and 5.8 × 1017 Pa s)

Fig. 13 Minimum possible
eccentricity for two spin–orbit
resonances as a function of
log(γ /n). The red line shows the
minimum eccentricity for
Mercury and, thus, establishes
the upper and lower boundary
values for its γ /n (see also Fig. 5
of Correia et al. 2014)
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Fig. 14 Deviation angle (δ), normalized equatorial prolateness (Eρ ), polar oblateness (Ez ), and mean value
of the rotation rate as a function of the time. The black curve corresponds to γ = 4.8× 10−8 s−1 and the red
curve to γ = 4.8 × 10−9 s−1. In both cases, we adopted e = 0.2056

of the two black curves and the red line determinates the boundary values for Mercury’s γ /n.
It is important to emphasize that, for Mercury, the rotation could have been captured in other
spin–orbit resonances before the 3/2 resonant configuration was reached. If we assume, for
instance, a previous fast rotating Mercury with �/n > 2 and e > 0.1, the rotation could
have been temporarily trapped in the 2/1 spin–orbit resonance, provided γ was closer to
the inferior boundary value (see red line in Fig. 13). However, when Mercury reached the
minimum eccentricity, the rotation would have escaped the 2/1 resonance and evolved to the
3/2 resonance.

6 Time variation of the shape and orientation of the figure

Figure 14 shows the time variation of the shape and orientation of a non-rigid homogeneous
Mercury’s figure and the mean value of the rotation rate for the boundary values of γ estab-
lished in the previous section, based on its current rotational configuration. The mean value
of the rotation is larger for the smallest value of γ . Also, the amplitudes of the oscillations
of Eρ and Ez are larger for the highest value of γ .

Table 1 shows some results of Mercury’s polar oblateness and equatorial prolateness,
namely the flattenings mean values of the hydrostatic case (Eqs. 2 and 3, corresponding to
γ → ∞), the flattenings mean values of the hydrodynamic equilibrium case of the creep
tide theory (cf. Fig. 14), the results obtained by converting the values of J2 and C22 obtained
by Matsuyama and Nimmo (2009; Eq. (43)) using the Darwin–Kaula model in the case of a
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Table 1 Values of the equatorial prolateness and polar oblateness of a homogeneous non-rigid Mercury in the
3/2 spin–orbit resonance, for e = 0.2056

Reference Equatorial prolateness Polar oblateness

Static case (Eqs. 2 and 3). Mean
values

1.697 × 10−6 2.966 × 10−6

Creep tide (cf. Fig. 14). Mean values 1.11 × 10−6 2.18 × 10−6

Darwin–Kaula model (Matsuyama
and Nimmo 2009)

1.1 × 10−6 2.2 × 10−6

MESSENGER data (Perry et al.
2015)

5.45 × 10−4 9.61 × 10−4

Fig. 15 Values of the deviation angle (δ), normalized equatorial prolateness (Eρ ), polar oblateness (Ez ), and
mean value of the rotation rate in the periapsis of Mercury’s orbit for three values of eccentricities as a function
of log(γ /n). We have e = 0.1, e = 0.2 and e = 0.3 on the black, red and blue curves, respectively

homogeneous fluid Mercury (kT∗
2 = 3/2), and the values obtained by converting the values

of J2 and C22 obtained from MESSENGER’s measurements (Perry et al. 2015).
Because of the rotation of δ and its periodicity, it is useful to characterize the figure

parameters by their values at a well defined moment, namely the time of perihelion passage.
In Fig. 15, we can see the values of the equatorial prolateness (in units of ε̄ρ), polar

oblateness, rotation rate and deviation angle at the perihelion of the orbit for a range of
values of γ . For smaller γ , the rotation rate is closer to the exact 3/2 spin–orbit resonance,
and δ is close to zero. As γ increases, δ increases significantly until approximately 20◦ in
the case of e = 0.1 (see black curve on the top left panel of Fig. 15). Also, the value of �/n
becomes significantly lower than 1.5 for higher values of γ .

Since we have shown a method to determinate the boundary values for γ based on the
final rotational configuration of the body, and applied such method to Mercury, we can now
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compare our results to the observed data for Mercury. Perry et al. (2015) give the values of
Mercury’s principal axes and deviation angle, based on MESSENGER’s data. Our range of
values for δ at the perihelion of Mercury’s orbit encompasses the values given by Perry et
al. However, for Eρ and Ez , the creep tide theory predicts a value two orders of magnitude
smaller than the value reported by Perry et al. There are no values of γ for which Perry’s
values for Eρ and Ez could be obtained by considering tidal interactions alone. In addition,
this discrepancy between the results is independent of the tidal model used. The observed
values for Mercury’s Eρ and Ez cannot be obtained by any tidal theory for Mercury’s figure
evolution, assuming hydrodynamic equilibrium.

Currently, it is well-known that Mercury’s internal structure is not homogeneous. One
attempt to solve the problem concerning the differences in Eρ and Ez is the extension of
the creep tide theory for the case of a differentiated Mercury. We performed numerical
integrations for a differentiated Mercury with three layers considering an approximation
of the model for Mercury’s interior structure proposed in Steinbrügge et al. (2018). The
value for the crust’s relaxation factor that we have from such interior structure model is
four orders of magnitude smaller than the lower boundary value that we determined for a
homogeneous Mercury. However, the results taking into account Mercury’s differentiated
structure yield approximately the same order of magnitude for Eρ and Ez when compared to
the homogeneous model. (The values for the differentiated case are, in fact, smaller than the
homogeneous ones.) Moreover, a model taking into account the differentiation of Mercury
and the lower viscosity of the fluid core of the planet should be responsible for a tidal
deformation of the order of the static tide of the homogeneous model (Steinbrügge et al.
2018), thus creating a tidal torque efficient to drive the system to the capture into the 3/2
resonance. To study Mercury’s rotational evolution with the current observed values for Eρ

andEz , wewould need to consider that there are permanent components for both the equatorial
prolateness and polar oblateness coefficients (see e.g., Bartuccelli et al. 2017).

7 Conclusion

We have used the new version of the creep tide theory (Folonier et al. 2018) to study the
rotational evolution of a homogeneous non-rigid body for various rotational configurations.
We considered a homogeneous viscous body which is under the action of the centrifugal
potential from its own rotation and the gravitational attraction of a companion. No permanent
equatorial asymmetry is assumed.

The creep tide theory allows us to obtain the time evolution of the body’s figure as well
as its rotation. The differential equations to be solved in this new version of the creep tide
theory are significantly simpler than the equations of the previous formulation of the theory
(Ferraz-Mello 2012, 2013, 2015a).Moreover, in the new formulation of the creep tide theory,
we do not assume a constant rotation rate in the early steps of the development of the theory
as a working hypothesis, as it was previously done. It is worth noting that the equations of
the new formulation of the creep tide theory are virtually equivalent to the equations of the
Maxwell viscoelastic model studied by Correia et al. (2014). In fact, the two models become
equivalent when the elastic terms are neglected (see Ferraz-Mello 2015b).

The dynamics of capture of a non-rigidMercury in the 3/2 resonancewas revisited. Studies
of the dynamics of capture in spin–orbit resonances have been thoroughly discussed before
byMakarov and Efroimsky (2013), Correia et al. (2014) and Ferraz-Mello (2014, 2015a) and
much of their findings are repeated in this paper for the sake of completeness. It was shown
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that spin–orbit resonances ensue for bodies with a low value of the relaxation factor, and the
number of spin–orbit resonances in which an initially fast rotating body may be captured
increaseswith the eccentricity.Analytical expressions for theminimumeccentricity forwhich
the possibility of capture in the 3/2 and 2/1 spin–orbit resonances exists were presented, their
results being in excellent agreement with numerical experiments. For the comparison with
the numerical experiments, we considered several numerical integrations of the equations for
the time evolution of the ellipsoid’s shape and the rotational evolution of the body, where the
initial rotation rate was set very close to the exact values of the spin–orbit resonances (e.g
� = 3n/2 for the 3/2 spin–orbit resonance). In each numerical integration, we considered a
value for the relaxation factor sufficiently close to the limit value for such resonance to exist.

Additionally to the study of the capture in spin–orbit resonances, we also studied the
figure evolution of the body when it is trapped in the 3/2 and 2/1 spin–orbit resonances. It
was shown that the tidal lag (δ) can either circulate or oscillate around 0. For instance, in the
case of the 3/2 spin–orbit resonance, the angle ϕB = δ + ϕ circulates with the same period
of the rotation, for low values of γ . For big values of γ , δ oscillates around 0; thus, the bulge
oscillates around the line oriented toward the companion. For the 2/1 spin–orbit resonance, it
was shown that for sufficiently low values of γ , the period of circulation of ϕB can be either
half or 2/3 of the orbital period, the former corresponding to the behavior of a rigid body.
When γ is increased, δ oscillates around 0, and ϕB circulates with the period of the orbital
motion.

In what concerns the application of the creep tide theory to the determination of the
relaxation factor of a non-rigid Mercury based on its current spin–orbit resonant state, it
was shown that the capture in the 3/2 resonance constrains the relaxation factor to be in the
interval given by 4.8×10−9 s−1 ≤ γ ≤ 4.8×10−8 s−1 (corresponding to 5.1×1017 Pa s ≤
η ≤ 5.0×1018 Pa s) when we assume, as working hypotheses, that (i) Mercury’s eccentricity
has never been below e = 0.1, (ii) its rotation rate was initially faster than the current value,
and (iii) no permanent components of the flattenings existed at the time of capture in the 3/2
spin–orbit resonance. These estimated values for η are much smaller than the values used
by Steinbrügge et al. (2018), who assumed that η = 1023 Pa s (which corresponds to γ

of the order 10−13 s−1) for Mercury’s crust. Some numerical experiments were performed,
supposing a differentiated structure for Mercury (based on the theory of Folonier and Ferraz-
Mello 2019), using the internal structure model proposed by Steinbrügge et al. (2018). We
verified that Mercury’s 3/2 spin–orbit resonant state can be maintained for the value of
Mercury’s crust viscosity of Steinbrügge et al. (2018), if the viscosity of the liquid core is
small. These preliminary experiments have shown that the rotation of the core may be rapidly
driven to the 3/2 spin–orbit resonance when we consider a linear friction acting between the
crust and the core.

Finally, the results for the values of the equatorial prolateness and polar oblateness of a
non-rigid homogeneousMercurywere compared to the data obtained from theMESSENGER
mission. The predicted flattenings, which are at most Eρ = 1.1× 10−6 and Ez = 2.2× 10−6

according to the tidal theories, were compared to the values obtained from MESSENGER
observations, which give Eρ = 5.5× 10−4 and Ez = 9.6× 10−4 (see Perry et al. 2015). The
observed equatorial prolateness and polar oblateness coefficients are two orders ofmagnitude
bigger than the values predicted by the tidal theories. This discrepancy between the results for
the flattenings holds for any tidal theory based on hydrodynamic equilibrium. We may add
that, in the case of a model considering a differentiated structure for Mercury, the values of
the crustal flattenings are even smaller than the values of the flattenings of the homogeneous
model. These facts suggest the existence of a fossil component, responsible for Mercury’s
current shape.
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Chapter 4

Secular spin-orbit evolution of two-body systems

4.1 Introduction

In this chapter we present the group of differential equations used to compute the

evolution of the orbital and rotational parameters of a two-body system. Both bodies are

assumed to be extended bodies (i.e., they contribute to the overall tidal orbital evolution

process). The theoretical bases of the equations are given by the works of Ferraz-Mello

(2015); Ferraz-Mello et al. (2015), Folonier et al. (2015), Folonier et al. (2018), Gomes

et al. (2019) and Ferraz-Mello et al. (2020).

4.2 Orbital evolution equations

Following Ferraz-Mello et al. (2020) and references therein, we first write the equation

for the evolution of the semi-major axis due to the existence of a disturbing force F. In

terms of the time derivative of the work done by the disturbing force (with Ẇ = F · v,

where v is the velocity vector), we have

da

dt
=

2a2

GMm
Ẇ. (4.1)

It is worth mentioning that Eq. (4.1) was obtained by using the definition of orbital

energy as Eorb = −GMm

2a
+MδU because of the explicit time dependence of the potential.

The eccentricity evolution equation is obtained by considering the expression for the

orbital angular momentum (namely, Lorb), which reads

Lorb =
GMm

na

√
1− e2. (4.2)
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Differentiating Eq. (4.2) with respect to time and rearranging to get the expression for

the time evolution of the eccentricity leads to

de

dt
=

1− e2

e

(
ȧ

2a
− L̇orb

Lorb

)
. (4.3)

4.2.1 Free rotating bodies

In the case of free rotating bodies, the expression for the variation of the semi-major

axis and the eccentricity due to tidal interactions can be calculated by neglecting the short-

period oscillations of the rotation rate. In other words, we can use the equation for the

time derivative of the work as calculated in Ferraz-Mello (2015). Using Eqs. (4.1) and (4.3)

then leads to1 (using the semidiurnal frequency ν = 2Ω− 2n instead of the rotation rate)

(
da

dt

)(FR)

=
R2
inε̄ρ,iαi

2a

∑
k∈Z

[
3(2− k)

γi(νi + kn)E2
2,k

γ2
i + (νi + kn)2

−
k2γinE

2
0,k

γ2
i + k2n2

]
, (4.4)

(
de

dt

)(FR)

= −3R2
inε̄ρ,iαi
4a2e

∑
k∈Z

[
P

(1)
k γi(νi + kn)E2

2,k

γ2
i + (νi + kn)2

+
P

(2)
k γinE

2
0,k

γ2
i + k2n2

]
, (4.5)

where the superscript FR indicates the free rotating body case and

P
(1)
k = 2

√
1− e2 − (2− k)(1− e2) ; P

(2)
k =

(1− e2)k2

3
. (4.6)

The coefficient α appearing in Eqs. (4.4) and (4.5) is related to the Love number k2

through

αi =
4

15
k2,i. (4.7)

It is worth mentioning that, for homogeneous bodies, we have k2 = 3/2, thus leading

to α = 2/5. Non-homogeneous bodies have k2 and α values always smaller than the values

corresponding to the homogeneous body case (see discussions in e.g., Batygin and Adams

2013; Folonier et al. 2015 and references therein).

The Cayley coefficients Eq,k can be calculated by direct integration of the integral

1 Somewhere in Ferraz-Mello (2015), the approximation n2a3 = GM was used. This expression is valid

only when M � m (which is generally the case for the planetary tides). We did not use this assumption

here. Eqs. (4.4) and (4.5) are valid for any mass values of both the primary and the companion, as in

Ferraz-Mello et al. (2020), Section 6.1.
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Eq,k(e) =
1

2π
√

1− e2

∫ 2π

0

a

r
cos[qϕ+ (k − q)`]dϕ, (4.8)

where ` and ϕ are the mean and true anomalies, respectively.

The calculation of the Cayley coefficients following Eq. (4.8) leads to a very precise

determination of the coefficients. However, the calculation of the integral in Eq. (4.8) at

each timestep significantly increases the computational cost of the simulations. We thus

adopted a series expansion of the Cayley coefficients to order e7, as given in Ferraz-Mello

(2015), Appendix B.

4.2.1.1 Bodies in stationary rotation

In the case of synchronous or stationary supersynchronous rotation, we use the expres-

sion for the time evolution of the semi-major axis and eccentricity taking into account the

short-period oscillations of the rotation rate. In such case, the resulting expressions for

the time variation of the semi-major axis and eccentricity, to order e2, are given by (see

Folonier et al. 2018, Ferraz-Mello et al. 2020)

(
da

dt

)(Sync)

' −21nαR2ε̄ρe
2

a

γn

γ2 + n2
, (4.9)

(
de

dt

)(Sync)

' −21nαR2ε̄ρe

2a2

γn

γ2 + n2
. (4.10)

4.3 Rotational evolution equations

The rotation rate evolution equation can be written following the constant rotation

rate approximation, which leads to (Ferraz-Mello, 2015)

dΩi

dt
= −3GMj ε̄ρ,i

2a3

∑
k∈Z

γi(νi + kn)E2
2,k

γ2
i + (νi + kn)2

. (4.11)

In the specific case of systems in which the star is a M, K, G or late F (subgiant) star,

the effect of the magnetic wind braking of the stellar rotation rate must be taken into

account additionally to the tidal interaction effects. In order to include such an effect, we

consider the magnetic wind braking as an angular momentum leakage effect. Several works

have aimed at a description of this effect in a wide range of stellar types with different
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internal structures. We cite the work of Amard et al. (2019) and references therein for a

review on this topic. We use the simplified model of Bouvier et al. (1997). The torque

acting on the star due to the magnetic wind braking, in such case, is given by

L̇wind = −fPKBΩ?

(
R

R�

)1/2(
M

M�

)−1/2

min(Ω?, ωsat)
2, (4.12)

where fP is a factor introduced in Pätzold et al. (2012) to account for the less efficient

wind braking mechanism in late F IV stars (i.e., subgiant stars), such as CoRoT-21. KB is

a constant with KB = 2.7× 1047 g cm2 s (corresponding to KB = 2.7× 1040 kg m2 s), and

ωsat is the angular velocity at which saturation occurs, with ωsat = 3Ω�, 8Ω� and 14Ω�

for stars of masses 0.5M�, 0.8M� and 1.0M�, respectively2.

It is worth mentioning that, for fully convective low-mass M stars, more complex models

are used in which the coefficient KB in Eq. (4.12) is not the same for slow and fast rotators.

Typical values in the case of slow rotators range from the same value as for solar-like stars

to 1.1 × 1047 g cm2 s depending on the adopted saturation value. For fast rotators, the

coefficient value is taken at least one order of magnitude smaller (see Irwin et al. 2011,

Section 5.2).

Finally, we mention that, when studying the evolution of two-body systems composed

by a star and a gaseous planet, the planetary rotation rate evolves on a timescale much

smaller than the corresponding timescales of evolution of the stellar rotation rate and

orbital parameters. Thus, we can consider that the planetary rotation is already stationary

and super-synchronous from the beginning of the simulation, where the stationary value

depends on the eccentricity through (see Hut 1981)

Ωp = n
1 + 15

2
e2 + 45

8
e4 + 5

16
e6(

1 + 3e2 + 3
8
e4
)

(1− e2)3/2
= n

[
1 + 6e2 +

3

8
e4 +O(e6)

]
. (4.13)

4.4 The complete group of spin-orbit evolution equations

In this section we present the complete group of equations to be solved in order to

compute the spin and orbital evolution of a given system. In our applications regarding the

secular evolution of exoplanetary systems of this thesis, we considered two types of systems:

2 For stellar mass values close to but not equal to the three values presented here, we interpolated the

value of ωsat considering a third order polynomial interpolation procedure.
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A star hosting a hot Jupiter and a star hosting a low-mass planet (i.e., a mini-Neptune or

a super-Earth). For the former, both the planetary and the stellar tide may contribute to

the overall orbital evolution of the system. Moreover, the planetary tidal interaction has an

important contribution on the stellar rotation evolution. For the latter, however, the stellar

tide may be neglected due to the small mass of the planet. Additionally, the influence of

the planetary tidal interactions on the stellar rotation rate evolution is negligible.

Although we will introduce the specific group of equations of each one of the two afo-

rementioned types of secularly-evolving systems, a comment is noteworthy: In the general

case of a secularly-evolving system where we do not know the magnitude of the tidal

interaction of each body, the evolution considering the tides in the two bodies must be

considered. In such a case, the most general group of equations to be employed is given by

Eqs. (4.4), (4.5) and (4.11), where the equation for the contribution of the tidal interactions

of each body is obtained by changing the subscript of the parameters in the equations.

4.4.1 Star + hot Jupiter

In this case, the rotation rate of the planet is assumed to be super-synchronous from

the beginning of the simulation. The equations for ȧ and ė coming from the planetary

tidal contribution are then given by

ȧp ' −
21nαpR

2
pε̄ρ,pe

2

a

γpn

γ2
p + n2

, (4.14)

ėp ' −
21nαpR

2
pε̄ρ,pe

2a2

γpn

γ2
p + n2

, (4.15)

which are the same equations as in Eqs. (4.9) and (4.10), with the physical parameters of

the planet used explicitly.

To add the contribution of the stellar equilibrium tide to the evolution of the orbital

elements, we use the equations given in Sec. 4.2.1. Using the symbol ? to refer to the

parameters of the star, we have

ȧ? =
R2
?nε̄ρ,?α?

2a

∑
k∈Z

[
3(2− k)

γ?(ν? + kn)E2
2,k

γ2
? + (ν? + kn)2

−
k2γ?nE

2
0,k

γ2
? + k2n2

]
, (4.16)

ė? = −3R2
?nε̄ρ,?α?
4a2e

∑
k∈Z

[
P

(1)
k γ?(ν? + kn)E2

2,k

γ2
? + (ν? + kn)2

+
P

(2)
k γ?nE

2
0,k

γ2
? + k2n2

]
. (4.17)
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The evolution of the orbital elements taking into account both the stellar as well as the

planetary tides is thus given by

ȧ = ȧp + ȧ?, (4.18)

ė = ėp + ė?, (4.19)

where the parameters in Eqs. (4.18) and (4.19) are defined in Eqs. (4.14)-(4.17).

For the rotational evolution equations, we remind that the planetary rotation rate is

already assumed to be in the supersynchronous state from the beginning of the simulation.

The rotation of the planet thus evolves as a function of the eccentricity following (see e.g.,

Hut 1981)

Ωp = n
1 + 15

2
e2 + 45

8
e4 + 5

16
e6(

1 + 3e2 + 3
8
e4
)

(1− e2)3/2
= n

[
1 + 6e2 +

3

8
e4 +O(e6)

]
. (4.20)

For the rotational evolution of the star, we consider the effects of both the stellar tide

as well as the magnetic wind braking of the stellar rotation. Thus,

Ω̇? = −3GMpε̄ρ,?
2a3

∑
k∈Z

γ?(ν? + kn)E2
2,k

γ2
? + (ν? + kn)2

− fPKBΩ?

α?M?R2
?

√
R?M�
M?R�

min(Ω?, ωsat)
2. (4.21)

The equations to be integrated to obtain the complete spin-orbit evolution of the sys-

tem are thus given by Eqs. (4.18), (4.19)3 and (4.21). The planetary rotation rate evolves

as a function of the eccentricity following Eq. (4.20). However, we emphasize that the

planetary rotation rate is not integrated numerically as it is the case of the orbital para-

meters and the stellar rotation rate. The group of differential equations we presente here

were integrated using the Radau 15 integrator (see Everhart 1985 for a description of the

numerical integration method). The group of equations described in this section is used in

Chapter 5.

3 In practice, when we perform the integration of the eccentricity evolution ODE, we used e2 instead

of e as a variable, since d(e2)/dt = 2ede/dt does not present divisions by small numbers in the small

eccentricity regime.
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4.4.2 Star + low-mass planet

In this case, as we briefly mentioned before, planetary tidal interactions are much more

significant for the orbital evolution process than the stellar tidal interactions. Moreover,

the planetary mass is too small to lead to a significant contribution to the stellar rotation

rate evolution. We thus consider that, for such systems, stellar tides can be completely

neglected and only the planetary tides need to be taken into account. However, one

point of the applications in the case of low-mass planets must be taken into account: for

mini-Neptunes, the relaxation factor is of the order of 1 − 50 s−1 (we remind that mini-

Neptunes are predominantly gaseous in composition). For super-Earths, however, the

relaxation factor value can vary from 10−6 s−1 to 10−9 s−1. In such case, the rotation of

the planet can be temporarily captured in spin-orbit resonant states, especially for orbits

with eccentricity values such that e ≈ 0.05 or larger. Then, we employ the following

equations to study the spin-orbit evolution

ȧp =
R2
pnε̄ρ,pαp

2a

∑
k∈Z

[
3(2− k)

γp(νp + kn)E2
2,k

γ2
p + (νp + kn)2

−
k2γpnE

2
0,k

γ2
p + k2n2

]
, (4.22)

ėp = −
3R2

pnε̄ρ,pαp

4a2e

∑
k∈Z

[
P

(1)
k γp(νp + kn)E2

2,k

γ2
p + (νp + kn)2

+
P

(2)
k γpnE

2
0,k

γ2
p + k2n2

]
. (4.23)

Ω̇p = −3GM?ε̄ρ,p
2a3

∑
k∈Z

γp(νp + kn)E2
2,k

γ2
p + (νp + kn)2

. (4.24)

The above group of differential equations is used in Chapter 6 to study the secular

evolution of exoplanetary systems containing potentially habitable exoplanets.
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Chapter 5

Spin-orbit evolution of hot Jupiters around M, K, G

and F stars

5.1 Introduction

In this chapter we study the spin and orbital evolution of hot Jupiters around M, K,

G and F stars. We employ the equations presented in Chapter 4. We analyse the survival

timescale of hot Jupiters around the stars as a function of the stellar relaxation factor and

eccentricity of the planet. A comparison of the results obtained in this chapter with the

results of previous works (such as McQuillan et al. 2013; Penev et al. 2018 and references

therein) is also presented. All the codes used to perform the simulations presented in this

chapter are provided in this GitHub repository, under the GNU Affero General Public

License (see the LICENSE file for more information regarding the use and distribution of

the code).

5.2 Spin-orbit evolution of hot Jupiters arond M, K, G and F stars

We consider five systems, corresponding to five different stars (see Table 5.1). For each

star, we consider two initial values for the rotation rate (an initially fast and an initially

slow rotator, with rotation periods given in Table 5.1). For each rotation rate value, four

simulations were performed, each one with a different initial eccentricity value. The values

of the eccentricity were: 0, 0.05, 0.1 and 0.2. The planetary rotation rate is assumed

to be super-synchronous from the beginning of the simulations. For the sake of clarity

and organization of the discussions, we separate the results corresponding to each star in

subsections.

https://github.com/gabogomes/hot_jupiter_evolution
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Table 5.1 - Data regarding the stellar physical parameters and initial values of the stellar

rotation period used in the simulations considered in this section.

System M? (M�) R? (R�) Prot,0 [days] ωsat(Ω�) γ? [s−1] γp [s−1] Reference M-R values

M0 0.6 0.62 1.6− 8.0 4.5 8 50 Kaltenegger and Traub (2009)

K2V 0.8 0.96 1.6− 8.0 8.0 8 50 Cram et al. (1989)

G2V 1.0 1.0 1.6− 8.0 14.0 8 50 No reference

F6V 1.25 1.359 2.3− 8.0 16.0 8 50 Pecaut et al. (2012)

F8IV 1.29 1.95 2.3− 8.0 16.0 8 50 Pätzold et al. (2012)

5.2.1 Evolution results for M star

In this case, we considered the data from the first row of Table 5.1. We considered

different colours to distinguish among the eccentricity values. The black, red, blue and

green curves correspond to initial eccentricity values of 0, 0.05, 0.1 and 0.2, respectively.

Figure 5.1: Results of the spin-orbit evolution for a close-in Jupiter-like planet around an M

star with an initial period of Prot = 1.6 days.

Figs. 5.1 and 5.2 correspond to the results for the initially fast and slow rotators, res-

pectively. We can see that, in all the cases considered, the semi-major axis and eccentricity
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Figure 5.2: Results of the spin-orbit evolution for a close-in Jupiter-like planet around an M

star with an initial period of Prot = 8.0 days.

always decrease from the beginning of the simulation until the semi-major axis value rea-

ches the Roche limiting value, corresponding to (see e.g., Penev et al. 2014 and references

therein)

aRoche = 2.44Rp

(
M?

Mp

)1/3

. (5.1)

When the semi-major axis value reaches the value of Eq. (5.1), the planet is destroyed

and only the stellar rotation rate continues to evolve following the magnetic wind braking

law (see Eq. 4.12).

Regarding the behavior of the stellar rotation period (see the bottom left panel in

Figs. 5.1 and 5.2), we note that the stellar rotation period increases at the beginning of

the simulation due to the action of the magnetic wind braking (i.e., the magnetic wind

braking effect causes a decrease in the stellar rotation rate). The semi-major axis then

decreases, which increases the magnitude of planetary tidal interactions. Afterwards, the

stellar rotation period decreases as a result of the tidal interactions (i.e., the orbital angular

momentum is transferred to the stellar rotational angular momentum) until the planet is

finally destroyed. After the planet is destroyed, the magnetic wind braking continues to
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extract angular momentum of the star, thus leading to a decrease in the stellar rotation

rate (this last feature is not shown in the figures).

In what concerns the influence of the eccentricity value on the evolution of the hot

Jupiter, it can be seen that the survival timescale of the planet is smaller for the cases

with larger initial values of eccentricity. Such result can be easily explained if we look at

Eq. (4.9). The effect of planetary tidal interaction (in the specific case of the supersynch-

ronous rotation) is to decrease the semi-major axis. Moreover, the rate of variation of the

semi-major axis is proportional to the square of the eccentricity. Thus, larger eccentricities

lead to larger values of da/dt, which in turn lead to a faster orbital decay process. The-

refore, the survival timescale is always smaller for the cases with larger initial eccentricity

values.

One last aspect to be discussed regarding the simulations presented so far is that the

initial value of the stellar rotation rate does not play an important role on the orbital

evolution of the system (compare, for instance, top left and top right panels in Figs. 5.1

and 5.2).

5.2.2 Evolution results for K star

In this case, we considered the data for the stellar parameters as shown in the second

row of Table 5.1. The results of the simulations are presented in Figs. 5.3 and 5.4.

The qualitative aspects of the results are the same as in the case of the M star. We

can see that the semi-major axis and the eccentricity always decrease from the beginning

of the simulation. The stellar rotation rate decreases in the beginning of the simulation

as a result of the magnetic wind braking. When the semi-major axis becomes sufficiently

small, the tidal torque becomes stronger and the orbital angular momentum is transferred

to the rotational angular momentum of the star, thus increasing the stellar rotation rate.

One important aspect to be discussed is the difference in the timescale of orbital evolu-

tion for the K star in comparison with the M star. We can see that, in all the cases shown

in Figs. 5.3 and 5.4, the timescale for orbital decay and planet destruction is much smaller

than in the case of the M star. Indeed, the radius of the K star is significantly larger than

the radius of the M star. Additionally, the larger mass of the K star leads to larger values

of ȧp and ėp. All these factors contribute to decrease the timescale of survival of the planet

around the star.



Section 5.2. Spin-orbit evolution of hot Jupiters arond M, K, G and F stars 69

Figure 5.3: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a K

star with an initial period of Prot = 1.6 days.

Figure 5.4: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a K

star with an initial period of Prot = 8.0 days.

Finally, we point out that, for the K star, the maximum values of the stellar rotation

period reached in the simulations are significantly smaller than the corresponding values
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for the M star. This result is a consequence of the fact that the mass and radius values

of the K star are significantly larger than the M star. As a consequence, the moment of

inertia of the K star is larger than the moment of inertia of the M star, and the effect of

the magnetic wind braking is weaker for the K star.

5.2.3 Evolution results for G star

In this case, we have a Solar twin hosting a hot Jupiter. The stellar parameters are the

ones presented in the third row of Table 5.1. The results of the simulations are presented

in Figs. 5.5 and 5.6 (corresponding to the results for the initially fast and slow rotator

case, respectively).

Figure 5.5: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a G

star with an initial period of Prot = 1.6 days.

The phenomenological description of the results is very similar to the case of the K

star. Indeed, since we adopted a radius value for the G star which is very close to the

radius value of the K star, we did not expect very different results regarding the timescales

of evolution of the system. The timescales for the planet destruction (i.e., semi-major

axis evolution until a = aRoche) is approximately 0.1 Gyr smaller for the G star case in

comparison with the K star case results. This result is due to the fact that the mass of the
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Figure 5.6: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a G

star with an initial period of Prot = 8.0 days.

G star is significantly larger than the mass of the K star. Planetary tides are thus stronger

for the G star.

5.2.4 Evolution results for a F6V star

Since F6 stars do not experience magnetic wind braking interactions, we neglected

the magnetic wind effect by making fP = 0 in the equation for Ω̇?. Thus, only tidal

interactions are responsible for the evolution of both the orbit and the stellar spin. The

stellar parameters of this case are shown in the fourth row of Table 5.1. The results of our

numerical experiments are presented in Figs. 5.7 and 5.8. It is also worth mentioning that,

for the fast rotator case, we adopted Prot = 2.3 days instead of Prot = 1.6 days. Amard

et al. (2019) argued that such value for the initial stellar rotation is more realistic since

it prevents the star from exceeding its critical rotation velocity (such adjustment is only

necessary for stars of masses between 1.2 and 1.5 Solar masses, see discussions in Sec. 2.6

of Amard et al. 2019).

The results of our simulations show that, differently from the cases presented for the

M, K and G stars, the planet survives to the orbital evolution process for the initially

fast-rotating star case. Indeed, tidal orbital expansion takes place when the rotation rate
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Figure 5.7: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a F6V

star with an initial period of Prot = 2.3 days and with fP = 0.

Figure 5.8: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a F6V

star with an initial period of Prot = 8.0 days and with fP = 0.

is larger than the mean motion. The semi-major axis increases from the beginning of the

simulations for three of the four cases presented in Fig. 5.7. For the case corresponding to
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the largest initial eccentricity value, however (see green curves in the figure), the planetary

tides cause a significant effect on the orbital evolution process and lead to a subtle semi-

major axis decay in the early stages of the orbital evolution process. However, after

approximately 1 Gyr of evolution, the orbit expands as in the other three cases. After

approximately 10 Gyr of evolution, the orbital period increases by a factor of 2 with respect

to the initial value. The results indicate that the orbital expansion process continues to

take place even after the 10 Gyr of evolution shown in the figure.

For the results regarding the initially slow-rotating star, we can see that the planet is

engulfed by the star in all the cases presented. Indeed, the initial stellar rotation is slow

enough to cause tidal decay of the planet. Thus, we expect the planet engulfment to take

place even though the magnetic wind braking effect is not considered in the simulations.

As it was verified for the other stars, when the semi-major axis decreases, the stellar

rotation rate increases due to an enhancement in the tidal torque, which causes an angular

momentum transference from the orbit to the stellar spin.

5.2.5 Evolution results for a late F IV (subgiant) star

The parameters of the late F IV star case are based on the data of CoRoT-21 and the

study performed by Pätzold et al. (2012). For such star, the magnetic wind braking law

cannot be neglected. However, it should have a less important effect on the rotation rate

evolution due to the stellar type (i.e. a late F subgiant star).

The results for the initially fast rotator case are presented in Fig. 5.9. Differently

from the initially fast-rotating case for the F6V star, we can see that the semi-major

axis increase is only temporary. Indeed, orbital expansion takes place for approximately

0.8 Gyr. Afterwards, the magnetic wind braking effect slows down the stellar rotation and

causes the orbital decay of the planet. An interesting aspect to be regarded is the final

value of the stellar rotation period after planetary engulfment takes place. Since the late F

IV star has significantly larger radius and mass values, the rotational angular momentum

increase caused by the planet orbital decay is not sufficient to increase the rotation rate of

the star as much as for the other stars.

The results for the initially slow rotator are presented in Fig. 5.10. The phenome-

nological description of the results is practically the same when compared to the results

reported for the M, K and G stars. Since the stellar rotation rate is slow from the begin-
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Figure 5.9: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a late

F IV star with an initial period of Prot = 2.3 days.

Figure 5.10: Results of the spin-orbit evolution for a close-in Jupiter-like planet around a

late F IV star with an initial period of Prot = 8.0 days.

ning of the simulation, we do not detect orbital expansion and the planet falls into the star

monotonically (i.e., we always have da/dt < 0).
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5.2.6 Comparison to Kepler exoplanetary systems

In this subsection, we analyse the evolution of the orbital and the stellar rotational

period for the M, K, G and F stars, for the cases considered in the previous subsections. We

compare the resulting evolution tracks on the Prot×Porb diagram with the data published

by McQuillan et al. (2013) related to the exoplanets discovered in the Kepler mission.

Figure 5.11: Evolution of the stellar rotation and orbital periods for the M (top left), K (top

right), G (bottom left) and F (bottom right) stars (where both the F6 and late F IV stars

were considered, with F6 star results in the black/red curves and the late F IV star results

in the green/blue curves). The arrows indicate the direction of the time evolution along the

period diagrams. Moreover, the dots show the initial values used in the simulations.

The periods evolution is presented in Fig. 5.11. Each plot corresponds to a different

star (see more details in the caption of the figure). We can see that, for all the cases, the

curves do not reach the region of the periods diagram corresponding to Porb ≤ 1.5 days

and Prot ≤ 5.0 days. Such gap has already been verified among KOI, as shown in Fig. 5.12

(extracted from McQuillan et al. 2013). Teitler and Königl (2014) have discussed that

such feature can be attributed to the tidal ingestion of close-in exoplanets. Thus, our

results regarding such feature are in agreement with the observational data displayed in
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Figure 5.12: Scatter plot of the KOIs in the period diagram, taken from McQuillan et al.

(2013). The size of the dots indicate the size of the radius of the planet, while the colours

refer to the stellar effective temperature.

McQuillan et al. (2013).

In what concerns the relatively large population of exoplanets in the upper left region

of the periods diagram (see Fig. 5.12), we can see that the major part of the exoplanets

are either super-Earths or mini-Neptunes. This is consistent with the fact that the stellar

tide is weaker for lower mass planetary companions. In such specific case, the planets can

survive for some Gyr even though the stellar rotation period is of the order 30 − 40 days

and the orbital period is of the order 0.5− 2 days.

The last aspect which we would like to comment regarding the comparison of our

theoretical results with the observational periods diagram is the presence of some massive

planets in the region corresponding to Porb = 3 − 10 days and Prot = 3 − 5 days and

stars with effective temperature of the order 6000 K (i.e., F stars). Such planets could

indeed have been formed with smaller semi-major axis values and then migrated due to

tidal interactions to the present configuration, provided that the initial stellar rotation was

relatively fast (of the order 2.3 days of rotation period) and that magnetic wind braking

interactions were absent. Some possible evolutionary tracks of the periods corresponding

to these cases can be seen in Fig. 5.11, bottom right panel.
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5.3 Survival timescale of hot Jupiters for M, K and G stars

In the previous section, we have presented several evolution scenarios for hot Jupiters

around M, K, G and F stars. We have noted that, when taking into account both tidal

interactions as well as the magnetic wind braking of the stellar rotation, the consequences

for orbital evolution for the M, K and G stars are the same at the end of the simulations:

the planet falls into the star. The only differences among the simulations we performed are

minor details (such as the temporary orbital expansion process in the earlier stage of orbital

evolution, which takes place for the case of the initially fast-rotating late F IV star with

fP = 0.1). Indeed, the relatively short timescales of survival of close-in massive exoplanets

has been extensively discussed in other works (see e.g., discussions presented mainly in

Penev et al. 2012, 2014 and references therein). The analysis of survival timescales of short-

period exoplanets has been used as a criterion to evaluate the maximum tidal dissipation

rates in stars in order to prevent planet engulfment, thus providing a calibration method

for the tidal dissipation rate in host stars and their planets (see discussions in e.g., Hansen

2010, 2012)1.

5.3.1 Dependence on the relaxation factor and eccentricity

In this section, we will investigate the dependence of the survival timescale (hereafter

τsurv) as a function of the relaxation factor. Since we have observed, in the previous

section, that increasing the eccentricity causes a decrease in τsurv, we will explore τsurv -

γ relationships for different eccentricity values. We consider stars with stellar parameters

given in the first, second and third rows of Table 5.1. For the initial rotation rate of the

stars, we considered the initially slow rotator with Prot = 8 days. The planetary relaxation

factor was fixed at γp = 50 s−1 (see Ferraz-Mello 2013, Table 1) and the stellar relaxation

factor was varied between 10 s−1 and 50 s−1.

The results of our simulations are shown in Fig. 5.13. The left panel shows the results for

the M star, the middle panel shows the results for the K star and the right panel shows the

results for the G star. We can see that the survival timescale follows a linear relationship

on the relaxation factor value for both the circular and eccentric case. However, for the

1 Indeed, the equations given by Hansen (2010) have been used by Ferraz-Mello (2013) to estimate the

relaxation factor of Solar type stars as well as hot Jupiters (see Sects. 9.9 and 9.11 of Ferraz-Mello 2013).
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Figure 5.13: Survival timescales as a function of the stellar relaxation factor for M, K and G

stars on the left, middle and right panels, respectively. Different colours of the dots represent

different eccentricity values, as it is shown in the labels. For the M star, we considered

a = 0.03 AU (corresponding to Porb = 2.44 days), while for the K and G stars we considered

a = 0.04 AU (corresponding to Porb = 3.25 days for the K star and Porb = 2.91 days for the

G star).

eccentric case, the slope of the resulting linear fit of τsurv = aγ?+b is smaller. As a working

example, we provide in Table 5.2 the corresponding linear fit coefficients for the G star, for

the four eccentricity values used in the simulations on the right panel of Fig. 5.13.

We can see that the difference between the values of the angular coefficients is small

when comparing the circular and less eccentric case (see values of a in the first and second

rows of Table 5.2). However, when we compare the values of the angular coefficients for

the circular and most eccentric case (i.e., the first and fourth rows of Table 5.2), the dif-

ference between the coefficients is approximately 30% of the absolute value of the angular

coefficient.

Indeed, the difference in the slope of the τsurv − γ? curves offers an important interpre-

tation of the results. Let us suppose that a given exoplanetary system has an age of 5 Gyr.

Assuming that the evolution of the stellar mass and radius values can be neglected and

that no planet-disk interactions took place during the past 5 Gyr, the main mechanism

ruling orbital evolution is the tidal interaction between the star and the planet. Thus, ta-

king into account that the planet survived the past 5 Gyr of the orbital evolution process

without falling into the star, it ensues that γ? must be such that τsurv > 5 Gyr. If we do

not have any information on the current eccentricity of the planet, we may assume that

the initial eccentricity of the planet could have been either 0 or values such as 0.2 (or larger

values). Using the values of a and b of Table 5.2, we then obtain that γ? ≥ 18 s−1 for the
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circular case and γ? ≥ 27 s−1 for the eccentric case with e = 0.2. Thus, γ? varies 50% if

we consider the uncertainty in the initial value of the eccentricity.

Table 5.2 - Angular and linear coefficients (a and b, respectively) of the function τsurv =

aγ? + b for the G star case, corresponding to the simulations shown in the bottom panel of

Fig. 5.13.

Eccentricity a b

0 0.2573 0.3522

0.05 0.2519 0.3336

0.1 0.2366 0.2791

0.2 0.1834 0.1089

The difference in the minimum value found for γ? considering different eccentricity

values is worth discussing. In Penev et al. (2018), for instance, the authors discuss the

possible values of the dissipation factor (namely, Q) for several exoplanetary systems, using

the criterion of planet survival timescales. In such work, the uncertainty in the determina-

tion of the values of Q arise from the propagation of the uncertainty in the observational

parameters. However, the authors consider that the orbital eccentricity is zero from the

beginning of the simulation. As we have seen with the simple example discussed in this

section, the uncertainty in the estimation of γ (which is linked to Q through an empirical

formula, see Ferraz-Mello 2013) arising from the consideration of non-circular orbits can

be of the order 50% (or even larger values if we consider an eccentricity value larger than

0.2), that is, if we consider a smaller relaxation factor and a smaller eccentricity, we find

a similar value for τsurv than if we consider a larger initial eccentricity value and a larger

value for the relaxation factor. Thus, such results encourage the consideration of different

values for the initial eccentricity of the system when performing studies related to the

calibration of the dissipation factor on exoplanets and their host stars.

5.3.2 Discussions regarding the estimations of Penev et al. (2018)

In the previous subsection, we were able to conclude that (i) τsurv is proportional to

the relaxation factor γ? and (ii) the role of the initial eccentricity value is to decrease
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τsurv. We proposed that the initial eccentricity value is thus an important parameter in

what concerns the estimation of the dissipation factor of exoplanetary systems. In another

words, we can have two simulations with different values for e0 and γ? which lead to the

same value of τsurv. Thus, the initial eccentricity value can be a parameter to explore the

uncertainties in the value of γ? for known exoplanetary systems.

In a recent work, Penev et al. (2018) have analyzed a sample of 188 known HJs with

an orbital period < 3.5 days and a relatively low temperature host star (Teff < 6100 K).

In such work, the authors provided constraints on the value of the stellar dissipation rate

for which the current stellar spin period and semi-major axis could be obtained. For such

purposes, all the observational uncertainties were taken into account.

We used the (empirical) equation linking the Q factor to the relaxation factor provided

in Ferraz-Mello et al. (2020), namely

γ? = ν?k2Q
′
?, (5.2)

to obtain the corresponding estimations of the stellar relaxation factor value for several

systems presented in Penev et al. (2018). We focused our analysis on exoplanetary systems

for whichQ could be constrained with both an upper and a lower uncertainty limiting value.

The results in Fig. 5.14 show that the relaxation factor corresponding to the Q value

determined in Penev et al. (2018) varies widely among the considered exoplanetary systems.

Indeed, a simple calculation of the mean value of the relaxation factor considering the

points in Fig. 5.14 leads to < γ >?= 134 s−1. However, we can detect some outliers

among the systems (i.e., stars with relaxation factor values much larger than the mean

value). For instance, WASP-43, HATS-18 and HAT-P-36 have relaxation factor values

that significantly deviate from the mean value. Thus, comparing the estimations of Penev

et al. (2018) with our predictions that the eccentricity value can change the determined

value of γ by 50% allows us to conclude that the errors in the observational parameters are

indeed much more important than the consideration of an initially non-circular orbit. The

dependence of Q (or γ) on the initial eccentricity value is only worth being discussed in

the cases where (i) the stellar rotation rate is determined with an uncertainty of the order

2 − 3 days and (ii) the stellar physical parameters are determined with an uncertainty of

the order 10% of the absolute value.

Finally, we point out two important aspects regarding the results for γ? presented in
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Figure 5.14: Scatter plot of the relaxation factor values corresponding to the Q value deter-

mined in Penev et al. (2018), as a function of the stellar mass, for the dataset provided in

Penev et al. (2018). The sample contains the 35 exoplanetary systems for which an upper

and a lower boundary value were determined for the quality factor.

this section. Firstly, the relaxation factor varies between approximately 1−102 s−1. There

is only one outlier in Fig. 5.14, for which γ? > 103 s−1. Secondly, the determination of

γ? was performed assuming the equation linking Q and γ given in Ferraz-Mello et al.

(2020). However, in the original work of Penev et al. (2018), the authors modeled tidal

interactions supposing the CPL (Constant Phase Lag) hypothesis. Indeed, such a model is

only applicable in the specific case where the mean motion and the stellar rotation do not

vary very much (thus leading to a constant value of ν in Eq. 5.2). For long-term spin-orbit

evolution studies, the tidal frequency varies significantly and thus, the Q factor varies. If

we suppose, however, that Q is time independent (as it is the case of the CPL approach),

it results from Eq. (5.2) that γ must vary to keep Q constant. However, γ is a constant

and varies only if the physical parameters of the star change. Its value is independent

of the tidal frequency. Thus, these results for the stellar relaxation factor should not be

used in spin-orbit evolutionary studies of exoplanetary systems before a more detailed

analysis using a more universal theory as the creep tide theory or Darwin’s CTL theory is
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performed. In fact, for some exoplanetary systems, for instance, the WASP-4, it has been

discussed that the stellar Q′? is significantly different from the value estimated by Penev

et al. (2018), given by Q′? = (4.5 − 8.5) × 104 (see e.g., Bouma et al. 2019,Baluev et al.

2020). The estimation of Baluev et al. (2020) was performed based on the hypothesis that

recently measured TTVs for WASP-4 b are induced by stellar tidal interactions. In such

case, we would have γ? of the order 1 s−1.



Chapter 6

Tidal evolution of exoplanetary systems hosting

potentially habitable exoplanets. The cases of

LHS-1140 b-c and K2-18 b-c

The following article addresses an implementation of the creep tide theory to study the

spin-orbit evolution of two secularly-evolving exoplanetary systems containing potentially

habitable exoplanets (hereafter PHEs): the LHS-1140 b-c (Dittmann et al., 2017; Ment

et al., 2019) and K2-18 b-c (Montet et al., 2015; Cloutier et al., 2019) systems. To take tidal

interactions into account for the spin-orbit evolution, we mix the first version of the creep

tide theory (Ferraz-Mello, 2015) with the version of Folonier et al. (2018) in the following

way: when the rotation rate is not trapped in the synchronism, we employ the constant

rotation rate solutions for the shape and orientation of the tidal bulge of the body, which

lead to the spin-orbit evolution equations of Ferraz-Mello (2015). For the synchronous

rotation rate case, we employ the analytical solutions for the shape and orientation of the

tidal bulge presented in Folonier et al. (2018). Finally, to take into account the secular

interactions due to the gravitational perturbations between the planets, we employ the

model of Mardling and Lin (2002). We explore the consequences of tuning the relaxation

factor of the planets on their orbital evolution. The results of this study allow us to propose

a criterion to estimate the relaxation factor of the planets based on the outcomes of orbital

evolution of the systems.

For the LHS-1140 b-c exoplanetary system, the results of the study presented in the

paper allow us to conclude that the planets are probably in nearly-circular orbits, provided

that the value of the relaxation factor of the inner planet is close to the value estimated

for the solid Earth, which is 0.9 × 10−7 s−1 ≤ γEarth ≤ 3.6 × 10−7 s−1 (for more details,
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and K2-18 b-c

see estimations of the relaxation factor for the solid Earth presented in Table 1 of Ferraz-

Mello 2013 and discussions therein). Since the eccentricities of the planets are not well

constrained from observations, we cannot rule out the possibility that the planets are

in eccentric orbits. If future data analysis of radial velocity and transit data indicate

high eccentricity values for the planets (such as eccentricities of the order 0.1 − 0.2), the

planets relaxation factor values are more likely to be either (i) much smaller than the value

estimated for the Earth or (ii) much larger than the value of the Earth, in which case the

viscosity of the planets would be closer to the values estimated for gaseous planets such as

Neptune and Jupiter.

For the K2-18 b-c exoplanetary system, the current lack of knowledge of the planetary

radius and mass value of the inner planet led us to perform an analysis of the scenarios of

orbital evolution considering two cases: a rocky Earth-like K2-18 c (hereafter case 1) and a

gaseous K2-18 c (hereafter case 2). Combining the analysis of the results considering cases

1 and 2 as well as the estimation of the eccentricity of K2-18 b (namely, eb = 0.20±0.08, see

Sarkis et al. 2018), we conclude that the inner planet cannot have a relaxation factor value

which is close to the value of the Earth. If this was the case, the timescale of eccentricity

evolution of the inner planet would be very small, and the eccentricity coupling of the

planets due to the secular gravitational interactions would cause the eccentricity of the

outer planet to decrease to values much smaller than the estimations of Sarkis et al. (2018)

considering a timescale of some Gyr for the orbital evolution of the system. Thus, to

conciliate the current eccentricity estimation of K2-18 b with the relaxation factor value

of the inner planet, we need to have two specific regimes of values for γc. Either γc is very

small, of the order 10−10 s−1 (which is a value typical of very rocky bodies with larger

viscosities than a super-Earth, like Mercury), or γc is very large, of the order 1 − 10 s−1.

In this case, the planet would be classified as a mini-Neptune. In summary, γc cannot be

of the order 10−7 − 10−8 s−1, which is a value typical of super-Earths.
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ABSTRACT
We present a model to study secularly and tidally evolving three-body systems composed
by two low-mass planets orbiting a star, in the case where the bodies rotation axes are
always perpendicular to the orbital plane. The tidal theory allows us to study the spin and orbit
evolution of both stiff Earth-like planets and predominantly gaseous Neptune-like planets. The
model is applied to study two recently discovered exoplanetary systems containing potentially
habitable exoplanets (PHE): LHS-1140 b-c and K2-18 b-c. For the former system, we show
that both LHS-1140 b and c must be in nearly circular orbits. For K2-18 b-c, the combined
analysis of orbital evolution time-scales with the current eccentricity estimation of K2-18 b
allows us to conclude that the inner planet (K2-18 c) must be a Neptune-like gaseous body.
Only this would allow for the eccentricity of K2-18 b to be in the range of values estimated in
recent works (e = 0.20 ± 0.08), provided that the uniform viscosity coefficient of K2-18 b is
greater than 2.4 × 1019 Pa s (which is a value characteristic of stiff bodies) and supposing that
such system has an age of some Gyr.

Key words: celestial mechanics – planets and satellites: general.

1 IN T RO D U C T I O N

After the discovery of the first exoplanet orbiting a solar-type star in
1995 (Mayor & Queloz 1995), a new research branch in astronomy
related to the detection and characterization of exoplanetary systems
ensued. Several projects have been developed with the aim of dis-
covering exoplanets. On the one hand, missions based on the transit
photometry technique (e.g. Kepler, TESS, and WASP) allow for a
determination of the radii of exoplanets by using space or ground
telescopes. On the other hand, high-precision spectrographs (e.g
HARPS, HARPS-N, ESPRESSO, and HIRES) are used to estimate
the masses of exoplanets by the method of Doppler spectroscopy
(a.k.a radial velocity measurements). The combination of the data
from Doppler spectroscopy measurements and transits thus allows
for the estimation of exoplanets densities and bulk compositions.
The diversity of masses and radii of the exoplanets discovered from
these missions allows for the characterization of such bodies to
vary between small Earth-like rocky planets or waterworlds to hot
Jupiters and brown dwarfs (see e.g Kuchner 2003; Léger et al.
2004, references therein). Taking into account such diversity of
the exoplanets compositions, several models have been developed
with the objective of modelling their interior structure (Seager et al.
2007; Adams, Seager & Elkins-Tanton 2008; Batygin & Stevenson
2013). Tidal interactions and their resulting consequences for orbital

� E-mail: gabrielogomes@usp.br

evolution have been studied for both exoplanets (Barnes 2017; Barr
et al. 2018) and their host stars (Bolmont et al. 2012) in order to
determine the fate of potentially habitable exoplanets (henceforth
PHE) w.r.t their position in the habitable zone (henceforth HZ) of
their host stars.

Barnes (2017) has shown that the tidal locking is a major factor
in the orbital evolution of PHE, and rotational synchronization
may be a characteristic of the majority of these planets. The
results presented by Barnes were based on simulations of the
coupled spin-orbit tidal evolution of exoplanetary systems, where
the Constant Time Lag (CTL) and Constant Phase Lag (CPL)
Darwinian approaches were employed.

In parallel works, Bolmont et al. (2017) and Gallet et al. (2017)
studied the effects of stellar tidal dissipation on the evolution of
close-in massive planets. Their results show that the dynamical tide
(i.e. the tidal interactions arising as a consequence of the excitation
of inertia waves in the interior of the stars) may be the dominant
effect on the orbital evolution of the exoplanetary systems in the pre-
main sequence (PMS), whereas the equilibrium tide (i.e the large-
scale hydrodynamic adjustment of a body and the resulting flow as
a consequence of the gravitational field of a companion) rules the
orbital evolution when the star reaches the zero age main sequence
(ZAMS) and evolves until the red giant branch (RGB) phase.

In most of the aforementioned works related to the study of tidal
interactions and the subsequent orbital evolution of exoplanetary
systems, Darwinian approaches have been employed to compute
the effects of the equilibrium tides in both the exoplanets and their

C© 2020 The Author(s)
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host stars. Such approaches require the knowledge of the tide lag,
which is related to the quality factor (Q) ruling the energy dissipated
by the bodies, and varies significantly among predominantly rocky
Earth-like planets and gaseous bodies such as hot Jupiters and host
stars (Dobbs-Dixon et al. 2004; Kellermann et al. 2018). Moreover,
the quality factor is an ad hoc parameter that has not been rigorously
linked to the internal structure and physical parameters of the
bodies, as a consequence of the lack of a thorough knowledge
of the dominant physical processes determining the magnitude of
the dissipation factor responsible for the tidal evolution of planetary
systems (Dobbs-Dixon et al. 2004).

Recently, a new theory to model tidal interactions among ce-
lestial bodies was developed by Ferraz-Mello (2013). This theory
(hereafter referred to as the creep tide theory) considers the
deformations of an extended body due to the perturbation caused
by the existence of a point mass companion. In this framework,
the non-instantaneous response of the extended body’s figure to the
disturbing potential caused by the point mass and the rotation of
the primary is ruled by the relaxation factor γ , which is inversely
proportional to the uniform viscosity coefficient η of the extended
body. The resulting expressions for both the rotational and orbital
evolution of the system depend on well-defined physical parameters.
No ad hoc constants ensue relating the tidal lags to the frequencies.
Moreover, the phenomenon of capture in spin-orbit resonances
may be described without the additional hypothesis of a permanent
equatorial asymmetry.

In 2018, a new version of the creep tide theory was developed by
Folonier et al. In this new version, the resulting equilibrium figure
of the extended body is assumed to be an ellipsoid with unknown
flattenings and orientation. The time evolution of the extended
body’s figure is obtained by the simultaneous integration of three
first-order ordinary differential equations. The expression for the
potential resulting from the deformations of the extended body is
used to obtain the equations that rule the orbital evolution of the
system and the rotational evolution of the extended body (Folonier
et al. 2018), by employing the basic principles of Newtonian
mechanics. The old version of the creep tide theory (Ferraz-Mello
2013) predicted small-amplitude forced oscillations of the rotation
in the case of stiff bodies in synchronous motions. The new version
of the theory (Folonier et al. 2018) takes them into account in a
self-consistent way.

In this work, we describe a model to study the orbital and
rotational evolution of three-body secularly evolving exoplanetary
systems composed by a star and two low-mass planetary compan-
ions, such as super-Earths and mini-Neptunes. The model is only
valid for the coplanar case, where all the bodies rotation axes are
perpendicular to the orbital plane at each instant. Both tidal and
secular planetary interactions are considered in the model. Tidal
interactions are taken into account by employing the creep tide
theory (Ferraz-Mello 2013; Folonier et al. 2018), while the secular
interactions between the planets are computed by using the models
of Mardling & Lin (2002) and Mardling (2007). The model is
applied to two exoplanetary systems, namely K2-18 b-c and LHS-
1140 b-c, where the choice of these systems for study is based
on the possible existence of a PHE in each system (namely, K2-
18 b and LHS-1140 b). In both cases, the mean motion ratio of
the planets indicates that no mean motion resonances influence the
dynamics of the system. For the specific case of the K2-18 b-c
exoplanetary system, the lack of an estimation of the radius of K2-
18 c indicates that both the cases of a rocky super-Earth and a
gaseous mini-Neptune compositions must be considered to study
the tidal evolution of this system.

The models describing tidal and secular interactions are presented
in Section 2, where only the main aspects of the theories, which
are required to obtain the equations ruling the spin-orbit evolution
of the system, are outlined. In Section 3, we briefly introduce the
discoveries related to the LHS-1140 b-c system and apply the theory
to study the evolution of the system. The application to the K2-18 b-
c system is performed in Section 4. The discussions and conclusion
of the work are presented in Section 5.

2 MODEL DESCRI PTI ON

In this section, we present the tidal and secular evolution models
used to obtain the equations ruling the time evolution of the
exoplanetary systems. The models employed in this work were
already presented in other papers. Thus, we only present the
main points of their theoretical formulation. For a more detailed
description, the reader is referred to Folonier et al. (2018) for
the tidal interactions model and Mardling (2007) for the secular
interactions model.

2.1 Tidal interactions

We consider an extended body of mass m (primary) and a point
mass M (companion) whose instantaneous distance to the primary
is r(t). We comment that, in actual applications of the model, both
the star and the planets may play the role of the primary.

The primary is assumed to rotate with an angular velocity �

pointing in the z-direction, perpendicular to the orbital plane. The
creep tide theory assumes a first-order linear differential equation
for the instantaneous surface figure ζ of the primary. This equation is
an approximate solution of the Navier–Stokes equation in spherical
coordinates, supposing a low-Reynolds-number flow. The equation
reads (Ferraz-Mello 2013, 2019)

ζ̇ = γ (ρ − ζ ), (1)

where γ is the relaxation factor given by

γ = Rgd

2η
, (2)

with R, g, d, and η being the mean radius, surface gravity, mean
density, and uniform viscosity coefficient of the primary and ρ is
the surface figure of the primary corresponding to the inviscid case
(a.k.a static tide). Supposing that the resulting surface figure can be
approximated by a triaxial ellipsoid rotated of an angle δ w.r.t the
companion, we obtain a system of differential equations ruling the
figure evolution of the primary, given by (Folonier et al. 2018)

δ̇ = � − ϕ̇ − γ ερ

2Eρ

sin 2δ, (3)

Ėρ = γ
(
ερ cos 2δ − Eρ

)
, (4)

Ėz = γ (εz − Ez) , (5)

where Eρ and Ez are the ellipsoid instantaneous equatorial and polar
flattening coefficients, respectively, ϕ is the true anomaly of the
companion and ερ , εz are the flattenings in the inviscid case. They
are given by

ερ = 15

4

M

m

R3

r3
≡ ε̄ρ

(a

r

)3
, (6)

εz = ερ

2
+ ε̄z = ερ

2
+ 5�2R3

4Gm
, (7)
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where G is the gravitational constant. It is worth emphasizing
that the assumption that the resulting equilibrium figure can be
represented by a triaxial ellipsoid is an approximation. Such
approximation is reasonable in the applications of this work since
the planets are relatively far from their host star. However, such
approximation may not be valid in the case of close-in planets
subjected to large tidal distortions (see e.g the discussions presented
in Hellard et al. 2019).

The expression for the potential acting on the companion consid-
ering the resulting triaxial shape of the primary rotated of an angle
ϕB = ϕ + δ w.r.t the axis x can be approximated, to first order in
the flattenings, by

MU = −GMm

r
− 3GCM

4r3

[
Eρ cos(2ϕB − 2ϕ) + 2

3
Ez

]
, (8)

where C is the moment of inertia of the primary.
Since we have the expression for the potential, we can calculate

the components of the force acting on the companion ( �F ). Moreover,
from the force expression, the torque can be obtained. The reaction
to the torque acting on the companion is the torque ruling the
rotational evolution of the primary, while the expressions for the
derivative of the work done by the disturbing tidal potential (Ẇ =
�F · �V , with �V being the velocity of the companion) and the angular
momentum variation (L̇) of the orbit give the equations ruling the
semimajor axis and eccentricity evolution. The calculations are
straightforward and we obtain

�̇ = −3GM

2r3
Eρ sin 2δ, (9)

ȧ = 2a2

GMm
Ẇ, (10)

ė = 1 − e2

e

(
ȧ

2a
− L̇

L

)
. (11)

Equations (9)–(11) must be solved simultaneously with equa-
tions (3)–(5) to give the complete tidal evolution of the system.
This method is henceforth referred to as full approach. We have six
first-order ordinary differential equations to be solved. The number
of differential equations to be solved can be reduced if we consider
the constant rotation rate approximation. In this case, � is assumed
to be a constant when solving for equations (3)–(5). Afterwards,
the equation for �̇ is obtained from the torque expression. This
approach is henceforth referred to as constant rotation rate approx-
imation. In this case, the formulation is strictly equivalent to the
previous version of the creep tide theory (Ferraz-Mello 2013, 2015)
and virtually equivalent to the approach of Correia et al. (2014),
which is based on a Maxwell viscoelastic rheology.

2.1.1 Constant rotation rate approximation

We now briefly mention some results of the constant rotation rate
approximation.

Considering that the short-period variations of the rotation rate
are negligible in equation (3) (which is a reasonable assumption for a
body far from the synchronous rotation regime), we can obtain a se-
ries expression for the differential equations ruling the orbital evolu-
tion of the system and the rotational evolution of the primary (Gomes
et al. 2019). The calculations are straightforward and the results are
the same as the ones presented in Ferraz-Mello (2015). We have

〈ȧ〉 = R2nε̄ρ

5a

∑

k∈Z

[
3(2 − k)

γ (ν + kn)E2
2,k

γ 2 + (ν + kn)2
− γ k2nE2

0,k

γ 2 + k2n2

]
, (12)

〈ė〉 = −3GMR2ε̄ρ

10na5e

∑

k∈Z

[
P

(1)
k

γ (ν + kn)E2
2,k

γ 2 + (ν + kn)2
+ P

(2)
k

3

γ k2nE2
0,k

γ 2 + k2n2

]
,

(13)

〈�̇〉 = −3GMε̄ρ

2a3

∑

k∈Z

γ (ν + kn)E2
2,k

γ 2 + (ν + kn)2
, (14)

with ν = 2� − 2n being the semidiurnal frequency. Moreover, we
have

P
(1)
k =

[
2
√

1 − e2 − (2 − k)(1 − e2)
]
, (15)

P
(2)
k = 1 − e2, (16)

and Ej, k are Cayley coefficients, given by (Ferraz-Mello 2013,
2015)

E2,k(e) = 1

2π
√

1 − e2

∫ 2π

0

a

r
cos[2ϕ + (k − 2)]dϕ, (17)

where  is the mean anomaly of the companion.
The above formulation adopting a constant rotation rate sig-

nificantly reduces the time required to numerically integrate the
equations of the orbital and rotational evolution of the system. The
discrepancies between the constant rotation rate approximation and
the full approach arise when the rotation is near the synchronous
regime, for stiff bodies. An analytical approximation to correctly
describe the figure and rotational evolution equations of the ex-
tended body in the synchronous rotation regime has already been
developed by Folonier et al. (2018), by taking into account the non-
negligible short-period variations of the rotation rate. The results
are briefly revisited in the next subsection.

2.1.2 The synchronous regime

When the rotation of the extended body is damped to the syn-
chronous (or pseudo-synchronous) attractor, the time evolution of
the rotation and the ellipsoid’s shape can be described by a sum
of periodic components with frequencies kn, where k ≥ 1 and n
is the orbital mean-motion (Folonier et al. 2018). The analytical
expressions for �, Eρ , Ez, and δ allow for the determination of
compact equations ruling the evolution of both the semimajor axis
and the eccentricity. The resulting expressions are (to order e2)

〈ȧ〉 = −21Cε̄ρe
2

ma

n2γ

n2 + γ 2
, (18)

〈ė〉 = −21Cε̄ρe(1 − e2)

2ma2

n2γ

n2 + γ 2
. (19)

2.2 Secular interactions

Additionally to the tidal interactions, the secular interactions be-
tween the planets must be taken into account in the case of a star
with two planetary companions. For a coplanar system, the secular
interactions cause a variation of the planets eccentricity as well
as their longitudes of periastron � . The model of Mardling &
Lin (2002) gives a system of four differential equations ruling the
planets secular evolution. The equations are

ė1 = −15

16
n1e2

m2

m0

(
a1

a2

)4 sin ��

(1 − e2
2)5/2

, (20)

ė2 = 15

16
n2e1

m1

m0

(
a1

a2

)3 sin ��

(1 − e2
2)2

, (21)
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Table 1. Parameters for the LHS-1140 system after
Ment et al. (2019). The eccentricity estimations have a
90 per cent confidence.

LHS-1140 Parameter value

Stellar mass (M
) 0.179 ± 0.014
Stellar radius (R
) 0.2139 ± 0.0041
Luminosity (L
) 0.00441 ± 0.00013
Effective temperature (K) 3216 ± 39
Rotation period (d) 131 ± 5
Age (Gyr) >5

LHS-1140 c Parameter value
Planet mass (M⊕) 1.81 ± 0.39
Planet radius (R⊕) 1.282 ± 0.024
Mean density (g cm−3) 4.7 ± 1.1
Semimajor axis (au) 0.026 75 ± 0.000 70
Orbital period (d) 3.777 931 ± 0.000 003
Orbital eccentricity <0.31

LHS-1140 b Parameter value
Planet mass (M⊕) 6.98 ± 0.89
Planet radius (R⊕) 1.727 ± 0.032
Mean density (g cm−3) 7.5 ± 1.0
Semimajor axis (au) 0.0936 ± 0.0024
Orbital period (d) 24.736 959 ± 0.000 080
Orbital eccentricity <0.06

�̇1 = 3

4

n1m2

m0

(
a1

a2

)3

(1 − e2
2)3/2

[
1 − 5

4

(
a1e2

a2e1

)
cos ��

1 − e2
2

]
,

(22)

�̇2 = 3

4

n2m1

m0

(
a1

a2

)2

(1 − e2
2)−2

×
[

1 − 5

4

(
a1e1

a2e2

)
1 + 4e2

2

1 − e2
2

cos ��

]
, (23)

where �� = � 1 − � 2, m0 refers to the mass of the star and the
parameters with subscript i = 1 (2) correspond to the inner (outer)
planetary companion.

In practice, the equations for the secular evolution of the system
are combined with the equations for the tidal evolution, thus giving
a more complete description of the evolution of the system.

3 LHS-1140 B- C . A SYS TEM W I T H TWO
RO C K Y SU P E R - E A RT H S

LHS-1140 b-c are hosted by a mid-M dwarf. The current values for
the estimated mean densities of the planets are ρb = 7.5 ± 1.0 g cm−3

(Dittmann et al. 2017) and ρc = 4.7 ± 1.1 g cm−3 (Ment et al. 2019).
The values of ρb and ρc suggest that both LHS-1140 b and LHS-
1140 c may be rocky Earth-like planets. The hypothesis of a rocky
structure was suggested for LHS-1140 b by Dittmann et al. (2017),
while the hypothesis of a rocky LHS-1140 c with a magnesium and
silicate core was discussed by Ment et al. (2019). Table 1 shows the
values of some physical and orbital parameters taken from Ment
et al. (2019), which were used in this work to study the spin-orbit
evolution of the system.

3.1 Spin-orbit resonances

It is well-known that rocky bodies may be captured in spin-orbit
resonances when the rotation evolves from initially fast rotating

Figure 1. Normalized secular torque as a function of the rotation rate
normalized by the mean-motion value. The eccentricity values were fixed
at the upper boundary values of Table 1. The black, red, blue, and green
curves correspond to γ i/ni = 10−1, 10−2, 10−3, and 10−4, respectively.
The black dashed lines indicate the exact values of the spin-orbit resonance
commensurabilibies.

states (Makarov & Efroimsky 2013; Correia et al. 2014; Ferraz-
Mello 2015). Tidal interactions slow down the body’s rotation
until an equilibrium configuration of the rotation is reached, where
〈�̇〉 = 0, i.e. the secular variation of the rotation is zero (the same
mathematical condition holds for the secular torque, since it is
proportional to �̇).

We now explore the possible spin-orbit resonances for LHS-1140
c and b by supposing that their current eccentricities are near the
upper boundary values estimated by Ment et al. (2019), namely eb =
0.06 and ec = 0.31 (cf. Table 1).

Fig. 1 shows the normalized torque as a function of the rotation
rate, normalized by the mean-motion of the planets. We see that
multiple equilibrium configurations of the rotation (corresponding
to the points where the curves reach the x-axis) ensue when
the relaxation factor is smaller (compare the different curves on
each panel). The stable (unstable) equilibrium configurations of
the rotation are the descending (ascending) intersections of the
normalized torque function with the horizontal axis. For LHS-1140
c, considering γ /n = 0.1 (corresponding to γ c = 1.93 × 10−6 s−1),
we see that there are three stable resonant spin-orbit configurations,
with �/n = 1, �/n = 3/2, and 2/1 (cf. black curve on the left-
hand panel of Fig. 1). The number of stable spin-orbit resonances
increases as γ /n decreases. For LHS-1140 b, the number of stable
spin-orbit resonances is smaller due to the smaller eccentricity
of the planet, and even for γ /n = 10−4 (corresponding to γ b =
2.95 × 10−10 s−1), only the 3/2 and the synchronous spin-orbit
resonances are stable. It is worth mentioning that, in Fig. 1, the
time evolution of the rotation rate is represented by the decrease
(increase) of the rotation rate in the case of the initially fast-rotating
prograde (retrograde) case.

The results of Fig. 1 show that, if the eccentricities of LHS-1140 b
and c are close to the upper boundary values estimated by Ment et al.
(2019), the rotation of the planets is most likely not synchronous
if we suppose that the planets had a past fast rotation rate with
� � n.

3.2 Spin-orbit evolution

We now study the tidal evolution of the planets orbits to assess
the time-scales of evolution and the effect of the coupled tidal and
secular interactions between the planets. Since the current rotational
configuration of the exoplanets is not known, we consider both
the initially fast-rotating and synchronous cases to show a more
complete description of the possible spin-orbit evolution scenarios
of the planets.
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Figure 2. Semimajor axis and eccentricity evolutions of both LHS-1140 c
and b, for γ c = 10−7 s−1 and γ b = 10−8 s−1. In these panels, we have (i) the
initially fast prograde rotation case (black), (ii) the initially fast retrograde
rotation case (red), and (iii) the initially synchronous case (blue). For LHS-
1140 b, the initially synchronous case gives the same results as the initially
fast-rotating retrograde case.

Several numerical integrations of the differential equations ruling
the secular and tidal evolution of the system were performed. For
the sake of making clear the contributions of the secular and tidal
interactions on the time evolution of the system, we compared the
results of the secular model to simulations where only the tidal
interactions were considered. In all the calculations performed in
this section, we neglect the effects of the stellar tides (i.e the tides
raised in the star by the planets), since some numerical experiments
have shown that the stellar tide effects are negligible compared
to the planetary tide effects, due to the planetary companions low
masses (such results have also been obtained in other works, see e.g
Rodrı́guez et al. 2011).

Fig. 2 shows a scenario of the tidal evolution of LHS-1140 b
and c, considering no secular interactions between the planets. We
used γ b = 10−8 s−1 and γ c = 10−7 s−1 (which are values close
to the characteristic values used for rocky planets, see Ferraz-
Mello 2013, Table 1), where a larger relaxation factor value was
attributed to LHS-1140 c given its smaller mean density value when
compared to LHS-1140 b. Three initial values of the rotation rate
were considered for LHS-1140 c, given by: (i) the initially fast-
rotating prograde case (black curve); (ii) the initially fast-rotating
retrograde case (red curve); and (iii) the initially synchronous
case (blue curve). For LHS-1140 b (right panels), we have: (i)
the initially fast-rotating prograde case (black curve); and (ii) the
initially fast-rotating retrograde case (red curve). In this case, the
initially synchronous case gives the same results as the initially
fast-rotating retrograde case, since no other spin-orbit resonances
are possible other than synchronism, due to the smaller initial
eccentricity value for this planet (see Fig. 1). By analysing the results
of Fig. 2, we see that the eccentricity damping occurs more rapidly
in the fast rotating cases (black curves), when compared to the
initially synchronous configuration. The capture in the synchronous
regime can be detected by analysing the eccentricity decay curve.
Indeed, in all panels of Fig. 2, there is a characteristic elbow in
all the curves corresponding to the initially fast rotating cases.
This elbow corresponds to the point where the planets rotation

Figure 3. Rotational evolution of LHS-1140 c and b, corresponding to the
initially fast-rotating prograde cases of Fig. 2. The initial rotation was taken
such that �/n = 30. The red dashed lines correspond to the synchronous
rotation value � = n.

reaches synchronism. Such visible signature of the capture in the
synchronous rotation regime was already discussed by other authors
(Rodrı́guez et al. 2012). The spin evolution of the planets in the
initially fast-rotating prograde case of Fig. 2 can be seen in Fig. 3.
As it is expected, the time of capture in the synchronous regime
(cf. Fig. 3) corresponds to the time where the elbow is seen in the
panels of Fig. 2.

We also emphasize the staircase behaviour of the rotation rate
as a function of time in Fig. 3. This behaviour is a consequence of
the fact that the graph of the torques versus the rotation rate shows
a succession of kinks that act as barriers for the evolution of the
rotation. For instance, consider the case shown by the black curve
in Fig. 1 (left). One body whose rotation velocity is initially high (i.e
� � n) will evolve leftwards (the torque is negative) until it reaches
the 2/1 spin-orbit resonance, where the torque sign changes and the
rotation can no longer evolve. The body remains trapped in that
resonance. However, when the eccentricity decreases, the height of
the peak at that kink also decreases. As the tidal evolution of the
eccentricity is continuously decreasing, the height of the peak may
become negative and the barrier of positive torques disappear. The
rotation will again evolve leftwards up to reach the next resonance
(in the considered example, the 3/2 spin-orbit resonance). This
behaviour will repeat itself up to the point where the rotation is
trapped into the synchronous rotation rate state. Such kinks of the
torques are also responsible for speeding up the process of rotation
rate decay when the rotation approaches the neighbourhood of spin-
orbit resonances (the torques are higher when � approaches spin-
orbit resonances). Such evolutionary behaviour is characteristic of
stiff bodies (where γ  n).

Several other numerical integrations to study the tidal evolu-
tion of the planets, considering no secular interactions between
them, were performed, and we varied the planets relaxation
factor values. We verified that the time-scale for which orbital
circularization takes place scales with γ −1 for the characteristic
range of values of the relaxation factor of stiff bodies, namely
γ  n.

Fig. 4 shows two scenarios of the orbital evolution of LHS-1140
c and b considering both tidal and secular interactions between
the planets. We have γ c = 10−7 s−1 and γ b = 10−8 s−1 on the
black curves, and γ c = 10−8 s−1 and γ b = 10−9 s−1 on the red
curves. The characteristic decay of the eccentricities due to the tidal
interactions is present. The secular interactions are responsible for
the oscillatory behaviour of the planetary eccentricities. Addition-
ally, the existence of the secular interactions cause an entanglement
of the planetary eccentricities, and the characteristic time-scale of
orbital circularization of the inner planet (LHS-1140 c) rules the
eccentricity decay of the outer planet (LHS-1140 b). This effect can
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Figure 4. Orbital evolution of both LHS-1140 c and b, considering secular
and tidal interactions. The black curves show an evolution scenario with
γ c = 10−7 s−1 and γ b = 10−8 s−1, while the red curves show a scenario
when γ c = 10−8 s−1 and γ b = 10−9 s−1.

be seen by comparing the time-scales of orbital circularization of
LHS-1140 b in Figs 2 and 4.

One last aspect regarding the orbital evolution of the planets in
the case of Fig. 4 is the lack of planetary migration for the outer
planet. This effect is due to the decrease in the time-scale of orbital
circularization of the outer planet as a consequence of the coupling
of the planetary eccentricities. The decay of the rotation rate to stable
spin-orbit resonant states and the orbital circularization processes
are no longer events that happen sequentially (which was the case
in the purely tidally evolving scenario). In the secularly evolving
case, these events take place on approximately the same time-scale
for the outer planet, and the most significant effect of the planetary
migration (which happens only when the planet has already reached
synchronism or non-synchronous spin-orbit resonances) does not
take place.

The relaxation factor of the planets was varied between 10−6

and 10−9 s−1, by maintaining the same ratio between the relaxation
factor values of γ b/γ c = 0.1. We verified that the time-scale for
orbital circularization of the planets is inversely proportional to γ c

when we consider both tidal and secular interactions. The existence
of secular interactions between the planets causes an entanglement
in the planetary eccentricities, which decreases the time-scale of
orbital circularization of the outer planet when compared to the
case where no secular interactions are considered between the
planets. We also verified that the time-scale of orbital circularization
is approximately 1 order of magnitude larger in the initially
synchronous and fast-rotating retrograde cases, when compared to
the initially fast-rotating prograde case.

We analysed the spin and orbit evolution of the system by
considering that the two planets have a small value of the relax-
ation factor (which is consistent with the discussions presented in
Dittmann et al. 2017 and Ment et al. 2019 regarding the planets
compositions and internal structure models). The results of the
numerical experiments have shown that the eccentricity decay of
both planets is ruled by the eccentricity decay of the inner planet.
The secular interactions between the planets cause a coupling
between the planetary eccentricities, thus forcing the eccentricity
decay of the outer planet at a time much smaller than the time-scale

Table 2. Parameters for the K2-18 system after Cloutier
et al. (2019), except for K2-18 b eccentricity value, which
was taken from Sarkis et al. (2018), and the periods of
the planets b and c, which were taken from Montet et al.
(2015) and Cloutier et al. (2017), respectively.

K2-18 Parameter value

Stellar mass (M
) 0.495 ± 0.004
Stellar radius (R
) 0.469 ± 0.010
Effective temperature (K) 3503 ± 60
Rotation period (d) 39.63 ± 0.50
Age (Gyr) –

K2-18 c Parameter value
Planet mass (M⊕ × sin i) 5.62 ± 0.84
Planet radius (R⊕) –
Mean density (g cm−3) –
Semimajor axis (au) 0.0670 ± 0.0002
Orbital period (d) 8.962 ± 0.008
Orbital eccentricity <0.2

K2-18 b Parameter value
Planet mass (M⊕) 8.63 ± 1.35
Planet radius (R⊕) 2.711 ± 0.065
Mean density (g cm−3) 2.4 ± 0.4
Semimajor axis (au) 0.1591 ± 0.0004
Orbital period (d) 32.944 88 ± 0.002 81
Orbital eccentricity (∗) 0.20 ± 0.08

of eccentricity decay due to the outer planet tidal interactions alone.
However, the rotation rate and the semimajor axis evolution are
not affected by secular interactions. Thus, the rotation of the outer
planet may reach synchronization much later than the inner planet.
In this case, if the synchronization of the outer planet is reached
after orbital circularization has already taken place, the semimajor
axis evolution of the outer planet may be neglected.

4 K 2 -18 B-C. A SYSTEM WI TH A
LOW-DENSI TY SUPER-EARTH AND A SMALL
I NNER PLANET

K2-18 b was firstly detected in 2015 (Montet et al. 2015). In
2017, Cloutier et al. provided a constraint for the planet’s density
through combined data obtained from the HARPS and CARMENES
instruments. In the latter work, the authors estimated a mean density
of ρb = 3.3 ± 1.2 g cm−3 for this planet. Moreover, the existence
of another planetary companion (namely, K2-18 c) in this system
was firstly discussed. The existence of K2-18 c was confirmed in
2019, by Cloutier et al. In this same work, the physical and orbital
parameters of K2-18 b were updated. The parameters used in this
work are given in Table 2. All data were taken from Cloutier et al.
(2019), except from K2-18 b eccentricity value, which was taken
from Sarkis et al. (2018), and the orbital periods values of K2-18
b and c, which were taken from (Montet et al. 2015) and Cloutier
et al. (2017), respectively.

The mean density of K2-18 b is currently estimated to be ρb =
2.4 ± 0.4 g cm−3 (Cloutier et al. 2019). Comparing such value with
the estimated mean densities of the Earth (ρear) and Neptune (ρnep),
we see that ρb is closer to ρnep, thus suggesting that a higher value
of the relaxation factor (typical of gaseous bodies) would be the
most reasonable assumption for such planet. However, taking into
account the classification of K2-18 b as a PHE, we might expect
an Earth-like composition for such planet, in which case we would
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Figure 5. Semimajor axis and eccentricity evolution of K2-18 b-c in the
case of a rocky K2-18 c with a relaxation factor of γ c = 10−7 s−1. Two
cases with different values for γ b are shown, and we have γ b = 10−7 s−1 in
the black curve and γ b = 10−8 s−1 in the red curve.

have a small value for the relaxation factor with γ b in the interval
10−7–10−9 s−1.

For K2-18 c, an estimation of the planet mean radius is not
currently available. Thus, we cannot estimate precisely the range of
values of the relaxation factor of this planet. Since it was verified,
in the previous section, that the eccentricity decay of secularly
evolving two-planets systems is ruled by the decay of the inner
planet eccentricity, we analyse the orbital evolution considering
both a Neptune-like gaseous structure and an Earth-like rocky
structure for K2-18 c in order to obtain a more complete scenario
of the time-scales of orbital circularization for such system.

4.1 Case 1. A rocky K2-18 c

In the case of a rocky K2-18 c with an Earth-like structure, we
would have Rc = 1.77 R⊕ (which gives a mean density equal to the
Earth’s mean density value), and a range of values of γ c = 10−7–
10−9 s−1 for the relaxation factor. Considering such range of values
of γ c, the rotation may be captured in non-synchronous spin-orbit
resonances, provided the initial rotation rate of the body is such
that � � n. We considered several numerical integrations of the
secular model for the evolution of the system, where the relaxation
factor of K2-18 b was varied from γ b = 10−7 to γ b = 10−8 s−1. In
all the cases, an initially fast-rotating state for both the planets was
assumed with �0 = 30n, and the eccentricities were set to e0 = 0.2
(Sarkis et al. 2018; Cloutier et al. 2019).

Fig. 5 shows the results of two numerical integrations of the
tidal secular model. On the black curves, we set γ b = 10−7 s−1 and
on the red curves we set γ b = 10−8 s−1. In both cases, we used
γ c = 10−7 s−1. Both the rotation of K2-18 b and c are trapped
in non-synchronous spin-orbit resonances since the initial values
of the eccentricities of both planets are of the order e = 0.2.
As the eccentricity decay takes place, non-synchronous spin-orbit
resonances no longer exist and both planets reach synchronism. The
point where the rotation rate of the planets reaches synchronism
corresponds to the point where the characteristic elbow is seen in
all the panels of Fig. 5 (such behaviour was already discussed in the
previous section).

Figure 6. Semimajor axis and eccentricity evolution of K2-18 b-c in the
case of a gaseous Neptune-like K2-18 c with a relaxation factor of γ c =
1 s−1. Two cases with different values for γ b are shown, and we have γ b =
10−7 s−1 in the black curve and γ b = 10−8 s−1 in the red curve.

The time-scale of orbital circularization of the system is inde-
pendent of the relaxation factor of K2-18 b. In both cases shown in
Fig. 5, the semimajor axis variation of the outer planet is relatively
small.

4.2 Case 2. A gaseous K2-18 c

In the case of a predominantly gaseous structure for K2-18 c, the
relaxation factor may be in the range 1–100 s−1. We chose the mean
radius value of K2-18 c giving approximately the same mean density
value of Neptune, corresponding to Rc = 2.68 R⊕.

Fig. 6 shows a scenario of the orbital evolution of K2-18 b-c
considering γ b = 10−7 (black curve) and γ b = 10−8 s−1 (red curve).
In both cases we used γ c = 1 s−1. In this case, we see that the orbital
circularization time-scale of the planets is no longer ruled by the
inner planet eccentricity decay, but by the eccentricity decay of the
outer planet. Such characteristic is a consequence of the fact that
the eccentricity decay of the outer planet due to tidal interactions
occurs more rapidly due to its relaxation factor value, despite the
fact that its distance to the star is much bigger than the distance
between the inner planet and the star. Since the eccentricities of the
planets are coupled as a consequence of the secular interactions, the
eccentricity decay of the outer planet forces the eccentricity decay
of the inner planet.

Another interesting characteristic of the results shown in Fig. 6
is that a moderately high eccentricity value for the planets can be
maintained for a time interval of some Gyr, provided that γ b =
10−8 s−1. Such scenario would not be possible if we considered
a small value for the relaxation factor of K2-18 c (see Fig. 5
and the discussion of Case 1). Thus, the comparison of the
eccentricity decay time-scales of Cases 1 and 2 taking into account
the eccentricity estimation given by Sarkis et al. (2018) for K2-18 b
(namely eb = 0.20 ± 0.08) allows us to conclude that the inner planet
(K2-18 c) of the system may be predominantly gaseous, with a big
value for the relaxation factor. Otherwise, orbital circularization
would already have taken place on a time-scale of approximately
0.1 Gyr (cf. Fig. 5).

MNRAS 494, 5082–5090 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/4/5082/5825369 by U
niversity of G

eneva user on 11 M
ay 2020



Tidal evolution of exoplanetary systems 5089

4.3 Discussion

The lack of information on the radius of the inner planet forced
us to study the orbital evolution of the system considering both
a predominantly rocky (Case 1) and a predominantly gaseous
(Case 2) structure for the inner planet. In both cases, we supposed
a small value for the relaxation factor of K2-18 b due to the
possibility of this planet being a PHE. In Case 1, we verified that
the eccentricity damping of both planets is dominated by the inner
planet’s eccentricity decay (as it was the case of the LHS-1140 b-c
system). The results show that orbital circularization is reached after
approximately 0.1 Gyr, supposing that the initial eccentricities of the
planets are e0 = 0.2 and γ c = 10−7 s−1. Moreover, the time-scale of
orbital circularization is independent of the value of γ b. Analysing
the eccentricity constraint for K2-18 b given by Sarkis et al. (2018)
and the time-scales of orbital circularization considering a rocky
K2-18 c, we see that it is highly unlikely for K2-18 b to have an
eccentricity of the order 0.1 if the inner planet (K2-18 c) has a
rocky composition. Such results show that the inner planet of the
system is more likely a gaseous mini-Neptune with a large value of
the relaxation factor (of the order 1–100 s−1), which is the scenario
shown in Case 2. In such case, we verified that an eccentricity of
eb = 0.2 can be maintained for a time-scale of some Gyr if γ b ≤
10−8 s−1.

We also performed other simulations considering an initially
small eccentricity value for K2-18 c (ec ≈ 0.05) and a moderately
high eccentricity for K2-18 b (eb ≈ 0.2) to investigate the possibility
of having a stiff Earth-like nearly circular K2-18 c and a currently
eccentric K2-18 b. However, the results have shown that the
moderately high value of the eccentricity of K2-18 b would excitate
the eccentricity of K2-18 c, thus leading to the same scenario shown
in Case 1.

5 C O N C L U S I O N

We have used the creep tide theory to present a model describing
the spin and orbit evolution of exoplanetary systems with two
planetary companions whose internal structure composition may
be described by two distinct regimes of the relaxation factor: (i) for
predominantly gaseous planets, the relaxation factor was supposed
to lie in the range of 1–100 s−1. (ii) For predominantly rocky planets,
we supposed that the relaxation factor was varied between 10−7

and 10−9 s−1. Additionally to the planetary tidal interactions, we
simultaneously computed the effects of secular interactions between
the planets, in order to have a more realistic description of the
mechanisms ruling the orbital evolution of the system. Stellar tide
effects were neglected due to the small planetary masses (which lie
in the interval of 1–10 M⊕).

The secular model was applied to the LHS-1140 b-c and K2-
18 b-c exoplanetary systems. For the LHS-1140 b-c exoplanetary
system, the results have shown that, if both exoplanets are rocky
planets (which is consistent with the discussions presented by
Dittmann et al. 2017), the time-scales of rotational synchronization
and eccentricity decay due to tidal interactions are much smaller
than the estimated age of the system. Thus, we conclude that the
planets are probably in nearly circular orbits and with their rotation
periods synchronized with their orbital periods. We emphasize that
the orbital circularization of the planets would already have taken
place even if we suppose higher values for the initial eccentricities
used in the simulations, provided that the inner planet is considered
as a rocky planet. Nevertheless, since no precise estimations of the
current eccentricities exist, we cannot exclude the possibility of the

planets being in moderately eccentric orbits. In that case, the planets
would rather be characterized as Neptune-like gaseous planets.
Thus, better constraints on the planets uniform viscosity coefficient
(and consequently, the planets response to tidal stress) may be
obtained when more precise estimations of the planets eccentricities
exist. For the K2-18 b-c exoplanetary system, we compared the
time-scales of orbital and rotational evolution of the planets to the
eccentricity estimations of the planets. The combination of these
data has lead us to conclude that the inner planet cannot be a rocky
super-Earth if we consider the eccentricity estimations for K2-18
b after Sarkis et al. (2018), namely eb = 0.20 ± 0.08. The outer
planet may be a rocky super-Earth with a relaxation factor of the
order γ b ≤ 10−8 s−1, in which case the orbital circularization would
take place on a time-scale of some Gyr. In all the cases analysed
in this work, we have verified that the secular interactions couple
the planets eccentricities, and the planet with the faster eccentricity
decay rules the eccentricity decay of both planets. We emphasize
that the initial values of the eccentricities of the planets were chosen
to be the current estimated values. However, the results would hold
for any other arbitrarily chosen initial eccentricity values.

Additionally to the analyses presented in this work for K2-18 b-c
and LHS-1140 b-c, we also calculated the time-scales of orbital and
rotational evolution of some single-planet systems where the planet
is currently classified as a PHE. The analyses were performed for
Kepler-61 b, Kepler-440 b, Kepler-442 b, and Kepler-443 b (the
orbital and physical parameters of these systems were taken from
Ballard et al. 2013 and Torres et al. 2015). In all these cases, the
lack of the mass estimation of the planets forced us to consider both
the cases of gaseous and rocky bodies to study the tidal evolution of
the planets. We observed that, due to the large values of the orbital
periods of the planets (with Porb > 100 d for Kepler-440, 442 and
443 b and Porb ≈ 59.8 d for Kepler-61 b), the time-scales of orbital
evolution are much larger than 1 Gyr, independently of the value
of the relaxation factor of the planets. Thus, no constraints on the
relaxation factor of the planets can be obtained by analysing the
eccentricity decay of these planets.
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Chapter 7

The Posidonius N-body code and implementation of

the creep tide equations

7.1 Introduction

Since the recent boom in the discovery of exoplanetary systems and the diversity on

their orbital configurations, the development of N-body integrators aiming specifically at

calculating the evolution of planetary systems has been a growing field of study1. In

such field of study, the development of efficient N-body integrators has allowed for the

development of new techniques for optimizing the process of numerical integration methods

by maximizing the precision of numerical integrations and maintaining the low cost of

computational calculations (we remind that long term evolution calculations used to take

a prohibitive time to be performed). In the specific case of N-body codes developed to study

the dynamics of close-in systems, tidal interactions are an essential additionally to point-

mass N-body interactions and, thus, must be implemented in a self-consistent way that can

be integrated with the standard Newtonian equations of gravitational interactions. Recent

efforts, such as the development of the Mercury-T code (see Bolmont et al. 2015), have

aimed at adapting existing numerical codes (e.g., Mercury, see Chambers 1999) to take

tidal interactions into account. In the case of Mercury-T, for instance, tidal interactions

have been added in the code following the Constant Time Lag (CTL) approach of Mignard

(1979). We also cite other recently-developed N-body integrators such as the REBOUND

code (Rein and Liu, 2012), which provides a user-friendly python wrapper to execute

simulations without the need to program directly in the C language (which is the source

1 It is worth mentioning that N-body codes had substantial development before exoplanets were disco-

vered, mainly to study the dynamics of star clusters.
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programming language of REBOUND), although the inclusion of other effects might require

some programming in C language.

The development of N-body codes has also led to a review and improvement of classical

methods of numerical integrations, such as the IAS15 integrator (Rein and Spiegel, 2015)

(which is an improvement of the Radau15 integration code provided in Everhart 1985) and

the WHFast integrator (Rein and Tamayo, 2015) (which is an improvement of the classical

Wisdom-Holman symplectic integrator method presented in Wisdom and Holman 1991).

Among the existing N-body open-source codes currently available, the Posidonius code

(see Blanco-Cuaresma and Bolmont 2017a) follows a different approach by considering a

recently-developed programming language: Rust. A preliminary study of some of the ad-

vantages of Rust over Fortran and C++ have already been discussed in Blanco-Cuaresma

and Bolmont (2017b). In this chapter, we will present the Posidonius code. We briefly re-

view some of the advantages of the Rust programming language for scientific programming.

Afterwards, we discuss the numerical integration methods implemented in Posidonius as

well as some additional details regarding the currently available effects which can be ta-

ken into account other than gravitational point-mass interactions. Then, we discuss the

implementation of the creep tide theory equations in the code. Finally, we perform two

applications to validade the code by considering some dynamical evolution scenarios of the

K2-265 b and CoRoT-7 b-c exoplanetary systems. We also discuss some aspects related

to the efficiency of the integration methods and the difference in the computation time

considering each numerical integration method.

7.2 The Posidonius code

7.2.1 The Rust programming language

The recently created Rust programming language was released by Mozilla Research,

motivated by the development of a new web browser engine. Rust uses patterns coming

from functional programming languages and it is designed not only for performance and

concurrency, but also for safety. Rust introduces concepts like ownership, borrowing and

variable lifetime. Such features allow programmers to avoid problems such as accessing in-

valid memory regions. They also enforce thread-safety and facilitate the automatic control

of the lifetime of objects during compilation time. Thus, there is no need for garbage col-
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lector like in Java (see more details in Blanco-Cuaresma and Bolmont 2017b and references

therein).

Figure 7.1: Typical memory and concurrency problems of C and Fortran. Figure taken from

Blanco-Cuaresma and Bolmont (2017b).

In Rust, variables are non-mutable by default (unless the mutable keyword is used).

Thus, they are bound to their content, owing it. When we assign one variable to another

(see panel a in Fig. 7.1), we are not copying the content but transferring the ownershipy,

so that the previous variable does not have any content. Such a transfer also occurs for

functions (see panel b in Fig. 7.1), and it is important to note that Rust will free the bound

resource when the variable binding goes out of scope. Thus, we do not need to manually

deallocate the memory. The compiler will validate for us that we are not accessing a

memory region that has already been freed (errors are caught at compilation time, before

execution time).

Additionally, apart from transferring ownership, we can borrow the content of a variable

(see panel c in Fig. 7.1). In this case, two variables have the same content but none of

them can be modified, thus protecting us from thread-sately issues. Alternatively, we can

borrow in a more traditional way, like in panel d in Fig. 7.1, where the function borrows

the content of a variable, operates with it (in this case, it could modify its content) and

returns it to the original owner (not destroying it as shown in panel b). Some examples of

the borrowing and ownership features are shown in Fig. 7.2.

Although the advantages and features of Rust mentioned above are generally employed

in most of the codes developed in Rust, it is possible to violate such features by using

unsafe blocks (e.g., when dealing with external libraries written in Fortran, C or C++).

If present, unsafe blocks allow us to clearly identify parts of the code which should be

carefully audited, keeping them isolated and not making the whole program unsafe by

default.

A detailed benchmark comparing implementations of some numerical integrator methods
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Figure 7.2: Examples of the properties of borrowing and ownership present in Rust.

in C, Fortran, Go and Rust is presented in Blanco-Cuaresma and Bolmont (2017a). The

conclusions of such work show that Rust is approximately 10 times faster and the corres-

ponding codes in Go and C. The computation time of Rust is only comparable to Fortran.

However, we emphasize the additional safety features of Rust which prevent memory allo-

cation and access issues.

7.2.2 Numerical integration methods

In this section, we present the main concepts of the two integrator methods currently

available for use in Posidonius: WHFast and IAS15.2

7.2.2.1 The WHFast integrator (Rein and Tamayo, 2015)

WHFast is a fast and accurate implementation of a Wisdom-Holman symplectic inte-

grator for long-term orbit integrations of planetary systems. To present the functioning

and algorithm of the integrator, we begin by defining the Hamiltonian H of the gravita-

tional N-body system as the sum of kinetic and potential terms in Cartesian coordinates,

which reads3

H =
N−1∑
i=0

p2
i

2mi

−
N−1∑
i=0

N−1∑
j=i+1

Gmimj

|~ri − ~rj|
. (7.1)

2 Posidonius also provides a leapfrog integration method package, although we do not recommend its

use since it is less precise than both WHFast and IAS15.
3 In all the equations presented in this chapter for the N-body interactions, we consider that the system

is composed by N bodies with N − 1 of them being planets.
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To further separate the above Hamiltonian, we could transform to heliocentric coor-

dinates involving the centre of mass and the ~ri − ~r0. However, cross-terms appear when

we perform such a transformation. Jacobi worked out a coordinate system in which the

kinetic terms are particularly clean, and the kinetic energy remains a sum of squares. In

terms of the Jacobi moments and masses (namely, p′i and m′i), Eq. (7.1) becomes

H =
N−1∑
i=0

p′i
2

2m′i
−

N−1∑
i=0

N−1∑
j=i+1

Gmimj

|~ri − ~rj|
. (7.2)

To use the Wisdom-Holman mapping technique, we further split the Hamiltonian by

adding and subtracting the term

Hadd =
N−1∑
i=1

GMim
′
i

|~ri ′|
, (7.3)

where

Mi =
i∑

j=0

mj. (7.4)

Finally, the new form for the Hamiltonian reads

H =
p′0

2

2m′0︸︷︷︸
H0

+
N−1∑
i=1

p′i
2

2m′i
−

N−1∑
i=1

GMim
′
i

|~ri ′|︸ ︷︷ ︸
HKepler

+
N−1∑
i=1

GMim
′
i

|~ri ′|
−

N−1∑
i=0

N−1∑
j=i+1

Gmimj

|~ri − ~rj|︸ ︷︷ ︸
HInteraction

. (7.5)

Now that we separated the full Hamiltonian into individual Hamiltonians, to all of

which we know the solution, a symplectic integrator can be constructed for the total

Hamiltonian using an operator split method (see e.g., Saha and Tremaine 1992). Following

the notation of Rein and Tamayo (2015), we describe the evolution of particles under a

Hamiltonian H for a time dt using the operator notation Ĥ(dt). The notation Ĥ2(dt) ◦

Ĥ1(dt) means applying operator Ĥ1(dt) first, then applying operator Ĥ2(dt). The Wisdom-

Holman mapping is defined by a Drift-Kick-Drift operator splitting scheme, the algorithm

of which can be described as below:

• (Drift) Evolve the system under ĤKepler(dt/2) ◦ Ĥ0(dt/2).

• (Kick) Evolve the system under ĤInteraction(dt).

• (Drift) Evolve the system under ĤKepler(dt/2) ◦ Ĥ0(dt/2).
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More detailed aspects of the Wisdom-Holman mapping such as the use of symplectic

correctors and methods of solution of the Kepler two-body problem (including the variati-

onal equations) can be found in Rein and Tamayo (2015), Sections 2.4 and 2.6 and Mikkola

and Innanen (1999).

In terms of the computational procedure of the Wisdom-Holman mapping, we would

like to comment that the evolution of HKepler and H0 are most easily accomplished in

Jacobi coordinates. The interaction Hamiltonian HInteraction, however, contains terms that

depend on both the Cartesian and Jacobi coordinates. The simplest way to calculate these

terms is to convert to Cartesian coordinates, evaluate the position vectors, convert the

accelerations back to Jacobi accelerations and calculate the remaining terms.

The procedures described up to this point regarding the Wisdom-Holman mapping

are the standard procedures originally described in Wisdom and Holman (1991). The

improvements performed by Rein and Tamayo (2015) are mainly linked to minor details,

many of which are related to finite floating-point precision on modern computers. We will

briefly cite the points modified by the authors (without giving detailed explanations of the

algorithms involved in such improvements) below:

• Jacobi coordinate transformations: This improvement refers to the method of con-

version between Jacobi and Cartesian coordinates.

• Newton’s method implementation: Such an improvement is related to the addition

of a mathematical operation in the middle of the Newton’s method implementation,

which is used to solve Kepler’s equation

• Initial guess for Kepler’s equation: This improvement regards an algorithm for cho-

osing the initial guess when solving Kepler’s equation by analysing the timescale

over which the orbital radius varies for a given timestep. The variable to be solved

using Newton’s method is then non-dimensionalized and solved perturbatively assu-

ming small variations from the unit value. For large eccentricities and timesteps, the

initial guess is modified to improve computational efficiency.

• C-function calculations: The Kepler solver routine is modified with an optimized

algorithm to calculate the c-functions, which are used in the process of finding a

solution to Kepler’s equation iteratively (see Rein and Tamayo 2015, Section 3.5)
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• Implementation of Gauss f- and g-functions: For timesteps smaller than half an orbi-

tal period, the f- and g-functions are redefined so that small quantities are summed

before they are added to the larger initial values of ~r and ~v, which leads to higher

numerical precision.

• Number of coordinate conversions: the conversion of coordinates is performed just

twice. The first time for the positions from Jacobi coordinates to the inertial frame,

and the second time for the accelerations from the inertial frame to Jacobi accelerati-

ons. This optimization trick is only possible under four assumptions: (1) the particle

position and velocities are not changed in-between timesteps, (2) outputs are not

required at every timestep, (3) variational equations are not integrated and (4) no

additional velocity-dependent forces are present.

Finally, we comment that the use of WHFast for the case of velocity-dependent con-

servative forces and dissipative forces needs additional extensions in which a framework

using non-commutative operators are used. In such case, symplectic correctors can be seen

as weak splitting correctors (for more details, see Tamayo et al. 2020) and the dissipative

forces can be added to otherwise symplectic N-body integrations.

7.2.2.2 The IAS15 integrator (Rein and Spiegel, 2015)

IAS15 is a 15th-order integrator to simulate gravtational dynamics. It is based on a

Gauss-Radau quadrature and can handle both conservative and non-conservative forces.

The algorithm is an improvement of the 15th-order modified Runge-Kutta integrator pre-

sented in Everhart (1985), where several flaws were fixed so that the accuracy stays at

machine precision for billions of dynamical times.

The functioning of the IAS15 integrator can be described as follows: we would like to

solve a fundamental differential equation of the type

y′′ = F [y′, y, t]. (7.6)

Thus, the force equation can have arbitrary velocity-dependent (and therefore non-

conservative) terms.

Let us now expand the force (namely, Eq. 7.6) in terms of a polynomial expression

which depends explicitly on time through
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y′′[t] ≈ y′′0 + a0t+ a1t
2 + ...+ a6t

7. (7.7)

The constant term is simply the force evaluated at the beginning of the timestep.

Introducing the step size dt as well as h = t/dt and bk = akdt
k+1, the expansion can be

rewritten as

y′′[h] = y′′0 + b0h+ b1h
2 + ...+ b6h

7. (7.8)

If we rewrite Eq.( 7.8) in a convenient way with

y′′[h] = y′′0 + g1h+ g2h(h− h1) + g3h(h− h1)(h− h2) + ...+ g8h(h− h1)...(h− h7), (7.9)

we can easily see that the gk depend only on the force evaluations at substeps hn with

n ≤ k. In another words, we can update the coefficients gk when we evaluate the hn
4.

Since we have the expression for the acceleration, both the velocity and the position

values can be obtained by direct integration of Eq. (7.8). The trick of the IAS15 integrator

is to choose the spacing of the substeps to be Gauss-Radau spacings (rather than, for

example, equidistant spacings). For the construction of a 15th-order scheme, we need

eight function evaluations.

Finally, to completely evolve the positions and velocities, we need to estimate the bk

coefficients. To do this, we need estimates of the forces during the timestep, which we take

at the substeps hn (the same substep times that we later use to approximate the integrals).

The force estimates give us the gk values which are then converted to the bk coefficients.

Such an implicit system is solved through a predictor-corrector scheme as described below.

First, we come up with a rough estimate for the positions and velocities by making

all bk = 0 (predictor phase). The, we use the forces to calculate better estimates for the

positions and velocities (corrector). This procedure is repeated until the desired precision

is obtained (for the convergence criterion, see Rein and Spiegel 2015, Section 2.2). In

practice, only a few (approximately 2) iterations of the predictor-corrector loop are needed

to achieve machine precision.

4 It is worth mentioning that the expression for y′′[h] in terms of the bk did not present such a practical

dependence for the bk on hn.



Section 7.2. The Posidonius code 103

Up to this point, we described the method involved in the classical Radau15 integrator

of Everhart (1985). In Rein and Spiegel (2015), the authors proposed an improvement on

the step-size control algorithm. Indeed, the original Radau15 code considered a dimensi-

onal parameter to control the precision of the integration scheme. Thus, a simple change

in code units can make the Radau15 code fail. Rein and Spiegel (2015) proposed the use

of a dimensionless parameter εb < 1 to control the precision of the algorithm. The proce-

dure to calculate the varying timestep by using εb can be described as follows: we begin

the integration with a timestep provided by the user (namely, the first value of dttrial).

In subsequent timesteps, we use the timestep set in the previous step. After integrating

through the timestep (i.e., after the predictor-corrector loop achieved convergence for a

given timestep), we calculate the following quantity:

b6 =
max|b6,i|
max|y′′i |

. (7.10)

The required value of dt (which we call dtrequired) can be calculated through

dtrequired = dttrial

(
εb
b6

)1/7

. (7.11)

If dttrial > dtrequired, the step is rejected and repeated with a smaller timestep. If the

step is accepted, then the timestep for the next step is chosen to be dtrequired.

One last aspect which we would like to comment is the method of determining εb.

Indeed, the quality of an integration scheme is assessed by analyzing the error estimates.

The criterion chosen by Rein and Spiegel (2015) is that the error of the integration scheme

Escheme reaches machine precision (10−16). In terms of dt, the control parameter is given

by

εb =

(
dt

T

)7
(2π)7

7!
, (7.12)

where T is the characteristic time-scale. For a nearly circular orbit, for instance, T corres-

ponds to the orbital period.

In terms of the relative integration error Erel, the expression for εb becomes (see Rein

and Spiegel 2015, Section 3.6 for more detailed calculations)

εb =

(
Erel × 1013

3.3

)7/16

. (7.13)
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We then arrive at εb = 0.028 for machine-precision values of the integration error.

7.3 Implementation of the creep tide equations

The Posidonius code was designed in a way that facilitates the inclusion of additional

effects to the forces other than the gravitational attraction among the bodies. Thus, the

inclusion of additional terms in the acceleration can be done by simply computing the car-

tesian components of the accelerations and then summing them to the overall acceleration

expression. In the case of the creep tide, the radial and orthoradial components of the

force (namely, Fr and Fo) are given by

Fr =

[
− 9

10

GMpM?R
2
p

r4
Eρ cos 2δ − 3

5

GMpM?R
2
p

r4
Ez
]

r, (7.14)

Fo =

[
3

5

GMpM?R
2
p

r4
Eρ sin 2δ

]
(z× r). (7.15)

The radial and orthoradial force expressions are then decomposed in their (x, y, z) parts

and used as additional perturbations in the overall acceleration expressions.

Finally, the rotation rate of the bodies are evolved by adding the expression for Ω̇,

namely

Ω̇p = −3GM?

2r3
Eρ sin 2δ, (7.16)

where, for the stellar rotation rate variation, it suffices to change the subscript of the mass

for the corresponding planet to obtain the stellar rotation rate evolution equation.

To implement the creep tide equations in Posidonius, we decided to adopt the constant

rotation rate approximation of the theory. In such case, we consider that the rotation

rate of the extended body is constant to solve for the shape equations, and afterwards

the rotation rate is evolved based on the resulting torque expression. In such a case, the

equations ruling the time evolution of the shape of the extended body are explicit analytical

expressions. More explicitly, we have

Eρ cos 2δ = ε̄ρ
∑
k∈Z
Ck[γ cosφk − (2Ω− kn) sinφk], (7.17)

Eρ sin 2δ = ε̄ρ
∑
k∈Z
Ck[γ sinφk + (2Ω− kn) cosφk], (7.18)
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Ez = ε̄z +
ε̄ρ
2

[∑
k∈Z
Zk(knγ sin k`+ γ2 cos k`)

]
, (7.19)

where the auxiliary parameters used in Eqs. (7.17) - (7.19) are given by

φk = k`− 2ϕ, (7.20)

Ck =
γE2,2−k

γ2 + (2Ω− kn)2
, (7.21)

Zk =
E0,k

k2n2 + γ2
, (7.22)

ε̄z =
5Ω2R3

p

4GMp

, (7.23)

ε̄ρ =
15

4

M?

Mp

(
Rp

a

)3

, (7.24)

γ =
Rpgd

2η
. (7.25)

We decided to adopt a seventh-order polynomial approximation to calculate the Cayley

coefficients in Posidonius. Such method was chosen instead of the complete integral repre-

sentation since the seventh-order polynomial expressions are valid for eccentricity values

up to e = 0.4. Additionally, calculating numerically the integral

Eq,k(e) =
1

2π
√

1− e2

∫ 2π

0

a

r
cos[qϕ+ (k − q)`]dϕ, (7.26)

for every timestep would significantly increase the number of computations to be performed

and decrease the performance of the code.

Some additional information regarding the creep tide implementation architecture in

Posidonius are provided in the Appendix A, together with some instructions on how to

prepare initial conditions files and executables for running the Posidonius code. A stable

version of the Posidonius code including both the CTL as well as the creep tide equations

can be found in https://github.com/gabogomes/posidonius.

7.4 Application: The K2-265 b planet

To test the performance and results of the Posidonius code, we considered initially

an application to study the spin-orbit evolution of a single-planet system, which allows

a direct comparison to the results coming from secular evolution numerical integrations

(where the latter were performed using the Equations of Chapter 4). In Table 7.1, we

https://github.com/gabogomes/posidonius
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present the orbital and physical parameters of the system. We mention that the chosen

values for the relaxation factor of the planet in all the cases we performed is not consistent

with estimations of the viscosity value of gaseous or rocky planets. The values chosen for γ

for the simulations we performed are fictitious and are used only for code testing purposes.

Additionally to the four simulation setups presented in Table 7.1, we also considered two

simulations using a secular evolution code, in which we compute the time evolution of the

rotation rate, the semi-major axis and the eccentricity following the equations presented

in Chapter 4. The integrator used in the secular evolution code is the Radau15 integrator

(see Everhart 1985).

Table 7.1 - Data for the stellar and planetary parameters used in our simulations. The

values for the physical and orbital parameters of both the star and the planet were taken

from Lam et al. (2018).

M? (M�) R? (R�) Mp (M⊕) Rp (R⊕) γp [s−1] a [AU] Ω0/n Integrator

0.915 0.977 6.54 1.71 8.6× 10−6 (γ < n) 0.03376 5 WHFast

0.915 0.977 6.54 1.71 8.6× 10−4 (γ > n) 0.03376 5 WHFast

0.915 0.977 6.54 1.71 8.6× 10−6 (γ < n) 0.03376 5 IAS15

0.915 0.977 6.54 1.71 8.6× 10−4 (γ > n) 0.03376 5 IAS15

The results of our numerical experiments for the spin-orbit evolution of K2-265 b are

given in Fig. 7.3. The black, red and blue curves correspond to the results coming from

the IAS15, WHFast and secular evolution code integrations, respectively. We can see that

the results among the different integrators and different codes are in very good agreement.

For the case with γ < n (i.e., the top panels), the rotation rate reaches the 2/1 spin-orbit

resonance and is captured in it. Afterwards, the eccentricity decay takes place until the

eccentricity is sufficiently small so that the 2/1 resonance is no longer an equilibrium confi-

guration of the rotation. The planet rotation then evolves to the 3/2 spin-orbit resonance.

The same process described for the 2/1 resonance takes place until the 3/2 resonance is

no longer an equilibrium configuration, resulting in a synchronous rotation for the planet.

For the case with γ > n, we can see that the rotation rate evolves directly to the super-

synchronous stationary solution. It is also worth mentioning that the super-synchronous
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Figure 7.3: Semi-major, eccentricity and rotation evolution of K2-265 b on the left, middle

and right panels, respectively. The upper panels refer to the rocky body case (i.e., the case

for which γ = 8.6×10−6 s−1), while the bottom panels refer to the gaseous case (i.e., the case

for which γ = 8.6 × 10−4 s−1). The black (resp. red) curve corresponds to the Posidonius

simulation results using the IAS15 (resp. WHFast) integration method. The blue curves are

the results coming from the secular evolution code.

stationary solution evolves to the synchronous stationary solution as the eccentricity decre-

ases. The value of Ω/n decreases with time as a consequence of the fact the the eccentricity

decays, thus shifting the equilibrium value of the rotation rate to smaller values of Ω/n.

7.5 Application: The CoRoT-7 b-c system

The CoRoT-7 b-c system is one of the most studied systems among the currently known

exoplanetary systems. Indeed, CoRoT-7 b is known for being the first super-Earth with

a measured radius. The pioneer works studying mass and radius values for the planets

of such system were the papers of Queloz et al. (2009); Leger et al. (2009); Hatzes et al.
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(2010); Ferraz-Mello et al. (2010, 2011)5. Other works (see e.g., Pont et al. 2011 and

references therein) have also provided estimations of the eccentricity values of the planets

based on the radial velocity data. The orbital and rotational dynamics of the planets

were studied in other works (see e.g., Jackson et al. 2010; Rodŕıguez et al. 2011; Callegari

and Rodŕıguez 2013; Rodŕıguez et al. 2016). The currently estimated physical and orbital

parameters of the system are given in Table 7.2.

As it can be seen in Table 7.2, the estimated eccentricity of the planets is relatively

high given their orbital period values. One of the possible explanations for such values is

the existence of excitations of the eccentricities due to planet-planet gravitational interac-

tions. However, another possibility which has recently been explored by Rodŕıguez et al.

(2016) is the so-called eccentricity pumping mechanism. According to such mechanism,

the planetary eccentricity could have been excited as a consequence of the excitation of

the planetary J2 coefficient6.

Table 7.2 - Stellar and planetary parameters for the CoRoT-7 b-c system, extracted directly

from the tables provided in exoplanet.eu.

Body Mass Radius a [AU] e Porb days

Star 0.93 0.87 −− −− −−
Planet b 4.74 1.52 0.0172 0.12 0.85

Planet c 13.559 −− 0.046 0.12 3.698

To test the performance and results of the Posidonius code and the creep equations

in the case of this multiplanetary system, we perform numerical experiments to study the

possibility of obtaining the same scenarios as in Rodŕıguez et al. (2016) for the eccentricity

pumping of CoRoT-7 b-c. We consider both a case for which the relaxation factor of the

planets is large (i.e., such that γ � n), as it is the case of gaseous planets such as mini-

5 It is worth mentioning that, due to the stellar activity of the CoRoT-7 host star, several data analysis

techniques and works have aimed specifically at studying the relationship between the stellar activity and

the planets periodic signals, see e.g., Lanza et al. (2010); Boisse et al. (2011).
6 It is worth mentioning that, although the application of the eccentricity pumping mechanism was

performed to CoRoT-7 b-c in Rodŕıguez et al. (2016), the eccentricity pumping mechanism was firstly

proposed by Correia et al. (2012).
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Neptunes, and a case for which the relaxation factor of the planets is small (of the order

10−7 s−1), which is the case of small Earth-like planets. It is worth commenting that the

values chosen for the relaxation factor and viscosity used in this section are not exactly

the same as the ones used in Rodŕıguez et al. (2016) since the time required to perform

the numerical integrations is sufficiently large (of the order 10-15 days). We thus decided

to use intermediate values, in which case the evolution scenarios can be studied with a

shorter time of numerical integration. The values for the viscosities of the planets used

in the simulations are, thus, experimental and should not be used for a realistic analysis

of the dynamics of the system. It is also worth emphasizing that the typical timescale

of evolution of the system is scaled roughly by the same factor used in the choice of the

relaxation factor values.

Figure 7.4: Semi-major axis, eccentricity and rotation rate evolution of CoRoT-7 b-c consi-

dering η = 1012 Pa s (corresponding to γ = 0.7 s−1 for the inner planet), in the left, middle

and right panels, respectively. The labels in the panels (p1 and p2) indicate to which planet

the curve refers (p1 refers to CoRoT-7 b while p2 refers to CoRoT-7 c).

Fig. 7.4 shows the results of a simulation performed using Posidonius, for CoRoT-7 b-c.

We chose viscosity values for the planets of η = 1012 Pa s. We can see that the semi-major

axis evolution is not significant. On the other hand, the eccentricity significantly evolves

even though only 500 kyr are shown in the figure. The eccentricity of the inner planet

increases after approximately 100 kyr of evolution, while the eccentricity of the outer planet

decreases. This feature is a consequence of the angular momentum conservation of the

system. For the rotation rate evolution results (right panel), we can see that both planets

evolve to the super-synchronous state, with the inner planet value for the equilibrium

rotation being significantly larger than the corresponding value for the outer planet. This

is a consequence of the larger eccentricity value for the inner planet, which shifts the

equilibrium value of Ω/n for the inner planet.
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Figure 7.5: Semi-major axis, eccentricity and rotation rate evolution of CoRoT-7 b-c consi-

dering η = 1014 Pa s (corresponding to γ = 7 × 10−3 s−1 for the inner planet), in the left,

middle and right panels, respectively. The labels in the panels (p1 and p2) indicate to which

planet the curve refers (p1 refers to CoRoT-7 b while p2 refers to CoRoT-7 c).

In Fig. 7.5, we show a simulation performed with exactly the same initial conditions

as in Fig. 7.4, but for η = 1014 Pa s. In this case, tidal interactions are stronger and the

eccentricity decay effect due to the tides overcome the effects of the eccentricity pumping

effect. As a consequence, the eccentricity values of both planets decreases rapidly to values

of the order 0.1 or smaller after around 500 kyr of orbital evolution. As in the previous

case, the rotation rate of the planets follow the evolution of the eccentricity, i.e., as the

eccentricity decreases, the equilibrium rotation rate decreases as well.

Figure 7.6: Semi-major axis, eccentricity and rotation rate evolution of CoRoT-7 b-c consi-

dering η = 1016 Pa s (corresponding to γ = 7 × 10−5 s−1 for the inner planet), in the left,

middle and right panels, respectively. The labels in the panels (p1 and p2) indicate to which

planet the curve refers (p1 refers to CoRoT-7 b while p2 refers to CoRoT-7 c).

Finally, we present a case for the spin-orbit evolution of CoRoT-7 b-c considering a

viscosity value which corresponds to γ ≈ n. The results are shown in Fig. 7.6. We can see

that even though only approximately 170 kyr of evolution are shown, such time baseline

is already sufficient to capture the eccentricity decay to a value around 10−3 (not visible

in the figure). The rotation of the planets evolves to synchronism, and the planets remain
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on nearly-circular orbits, with tidal interactions damping any kind of eccentricity pumping

caused by planet-planet gravitational interactions or J2 excitations.

7.6 Final considerations

In this chapter, we have presented the Posidonius code and described some of the main

tools regarding the numerical integration process. We also described the method which

we used to implement the creep tide equations in the code. For the sake of clarity, more

computational aspects of Posidonius are also given separately in Appendix A. We have

performed two applications to verify the functioning and consistency of Posidonius: 1)

An application to the K2-265 b exoplanetary system, in which case we compared both

the two integrators of Posidonius (namely IAS15 and WHFast) with the results coming

from a secular evolution code developed by us (in which case we evolve the semi-major,

eccentricity and rotation rate following the equations presented in Chapter 4), and 2) An

application to the CoRoT-7 b-c exoplanetary system, in which case we briefly revisited

the phenomenon of eccentricity pumping caused by J2 excitations of the inner planet. In

the first case, the results of Posidonius and the secular evolution code are in very good

agreement. For the second application, we verified qualitatively the same aspects as the

ones presented and discussed in Rodŕıguez et al. (2016)7. We have also verified that, when

tidal dissipation is too strong, the eccentricity mechanism is absent and no eccentricity

increase is present. Since we know that the current value of the planets eccentricities is

moderate (with e = 0.12 for both planets), we can make the hypothesis that either the

planets have very large values of the relaxation factor or their relaxation factor is very

small. In these two cases, eccentricity pumping occurs and the eccentricity of the planets

could be maintained at relativety high values until the present.

7 We emphasize that the values of the Maxwell time (which can be translated to the creep tide relaxation

factor parameter by making τ = 1/γ) used by Rodŕıguez et al. (2016) are different from the corresponding

values of the relaxation factor used in our simulations, and thus we focused on a qualitative interpretation

of the results rather then a more thorough quantitative comparison of the results.
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Chapter 8

Influence of equilibrium tides on transit-timing

variations of close-in super-Earths

The following article addresses an implementation of the creep tide theory in the Po-

sidonius code. It considers the application of the code to study transit timing variations

(TTVs) induced by tidal interactions. A specific application is considered to K2-265 b

(see Lam et al. 2018), which is a super-Earth orbiting a G8V star with an orbital period

of 2.37 days. The maximum estimated value of the eccentricity of the planet is 0.163.

We analyse the influence of the number of transit events on the amplitudes of the TTVs,

as well as the influence of other parameters such as the stellar mass and the semi-major

axis value. The influence of the planetary rotation rate and the eccentricity value are also

discussed.

The results for the application we performed allowed us to verify that the most impor-

tant contribution to TTVs coming from planetary tidal interactions is the orbital decay

effect. We also verified that, in agreement with other previous works on the subject (see

e.g., Ragozzine and Wolf 2009), the amplitude of the tidally-induced TTVs scales with the

number of transits squared. Thus, a long time baseline is critical for confirming that the

TTVs are in fact induced by tidal interactions. We also investigated the effects of the stel-

lar oblateness and the general relativity on the TTVs, and concluded that in the specific

case of K2-265 b, such effects lead to much smaller contributions than the ones coming

from tidal interactions to the TTVs. In cases where the effects of the general relativity

can cause contributions of the same order of the tidal interactions, we can use occultation

timing variations (OTVs) to disentangle between the effects of the general relativity and

the tidal interactions on the changing orbit of the system. In terms of numerical values
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for the physical and orbital parameters of exoplanetary systems for which the detection

of tidally-induced TTVs would be optimistic, we concluded that, for planets with a semi-

major axis smaller than 0.02 AU, an amplitude of the tidally induced TTVs on the order

of 20−80 s may be reached even for small observation timescales (on the order of 2−3 yr),

provided that the stellar mass is between 0.5 and 1.0 Solar masses.
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ABSTRACT

With the current growth in the discovery of close-in low-mass exoplanets, recent works have been published with the aim to discuss
the influences of planetary interior structure parameters on both the shape of transit light curves as well as variations in the timing of
transit events of these planets. One of the main aspects explored in these works is the possibility that the precession of the argument
of periapsis caused by planetary tidal interactions may lead to unique effects on the transit light curves of the exoplanets, such as the
so-called transit-timing variations (TTVs).
In this work, we investigate the influence of planetary tidal interactions on the transit-timing variations of short-period low-mass rocky
exoplanets. For this purpose, we employed the recently developed creep tide theory to compute tidally induced TTVs. We implemented
the creep tide in the recently-developed Posidonius N-body code, thus allowing for a high-precision evolution of the coupled spin-
orbit dynamics of planetary systems. As a working example for the analyses of tidally induced TTVs, we applied our version of the
code to the K2-265 b planet. We analyzed the dependence of tidally induced TTVs with the planetary rotation rate, uniform viscosity
coefficient, and eccentricity. Our results show that the tidally induced TTVs are more significant in the case where the planet is trapped
in nonsynchronous spin-orbit resonances, in particular the 3/2 and 2/1 spin-orbit resonant states. An analysis of the TTVs induced
separately by apsidal precession and tidally induced orbital decay has allowed for the conclusion that the latter effect is much more
efficient at causing high-amplitude TTVs than the former effect by 2–3 orders of magnitude. We compare our findings for the tidally
induced TTVs obtained with Posidonius with analytical formulations for the transit timings used in previous works, and we verified
that the results for the TTVs coming from Posidonius are in excellent agreement with the analytical formulations. These results show
that the new version of Posidonius containing the creep tide theory implementation can be used to study more complex cases in the
future. For instance, the code can be used to study multiplanetary systems, in which case planet-planet gravitational perturbations must
be taken into account in addition to tidal interactions to obtain the TTVs.

Key words. planet-star interactions – planets and satellites: interiors – planets and satellites: terrestrial planets

1. Introduction

The measurement of transit-timing variations (TTVs) has been
shown to be an invaluable tool in the field of exoplanetary
detection and characterization (Agol et al. 2005). In multiplanet
systems, for instance, the gravitational interaction between plan-
ets leads to deviations from strictly Keplerian orbits. These
deviations in turn lead to a shift in the timing of planetary transit
events. The TTV effects are usually investigated by directly run-
ning N-body dynamical simulations. The advantage of such an
approach lies in the fact that the results are valid for arbitrary
eccentricities and inclinations of the planets. Several studies
have employed the technique of TTV analyses to improve the
mass measurement of disturbing (and, in some cases, nontran-
siting) planetary companions, as well as their orbital parameters
(Nesvorný & Morbidelli 2008; Lithwick et al. 2012; Nesvorný &
Vokrouhlický 2016; Agol et al. 2021).

Although planet–planet interactions are among the main
effects leading to high-amplitude TTVs, any interaction causing

a drift of a planet from its unperturbed Keplerian orbit can induce
TTVs. For very close-in planets, for instance, general relativity-
induced apsidal precession and tidally induced orbital decay (see
e.g., discussions in Ragozzine & Wolf 2009) may be strong
enough to cause significant variations in the orbital elements of
the planets and lead to observable TTVs. The detection of such
TTVs caused by these disturbing forces depends on the mag-
nitude of the induced TTVs compared to the precision of the
instruments measuring transit events.

In the field of study of tidal interactions and subsequent spin-
orbit evolution, the parameter which is responsible for dictating
the response to tidal stress is the complex Love number, which
is the ratio of the additional gravitational potential induced by
the internal mass redistribution of the planet due to tidal defor-
mation to the external tidal potential created by the perturber
(Love 1911). Thus, provided that the tidally induced TTVs are
big enough to be detected, matching the observed TTVs with
the values estimated by numerical simulations of the tidal evolu-
tion of the system would allow us to estimate the complex Love

Article published by EDP Sciences A23, page 1 of 11
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number of the bodies, thus providing us with invaluable infor-
mation regarding the interior structure of the planets and their
rotational state, for example.

In a recent work, Patra et al. (2017) analyze transit and occul-
tation data of WASP-12 b (see e.g., Hebb et al. 2009; Haswell
2018 and references therein) and show that the planet could be
undergoing an orbital decay process corresponding to a mean
period decay of Ṗ =−29± 3 ms yr−1, which would be compatible
with a stellar quality factor on the order of 2× 105. However, the
authors point out that apsidal precession induced by planetary
tidal deformation could provide the same effects on the transit
curves when compared to the orbital decay process induced by
stellar tides, in which case the Love number of the planet would
be on the order of kp = 0.44± 0.10. The confusion between the
two effects could only be solved if occultation data were ana-
lyzed in addition to transit data, in which case the contribution
from apsidal precession gives an opposite sign to the occulta-
tion timing variation curves when compared to orbital decay. In
a more recent work, Yee et al. (2020) analyze new transit and
occultation measurements for the same system and verify that a
model for the transit timings considering orbital decay is more
likely to explain the TTV curve of the planet when compared to
a model considering apsidal precession.

Although the recent discussions raised by Ragozzine & Wolf
(2009), Patra et al. (2017), and Yee et al. (2020), for example,
have paved the way for future investigations regarding the tidally
induced TTVs, few studies have been dedicated to an exploration
of these effects for low-mass close-in rocky exoplanets. The rea-
son for the lack of studies for such class of exoplanets is linked
to the fact that only a few of them had been discovered before
the results of photometric surveys coming from missions such
as Kepler (Youdin 2011; Fressin et al. 2013) and TESS (Sullivan
et al. 2015). However, with the recent boom in the discovery and
characterization of close-in rocky super-Earths and the improve-
ment in the precision of the transit timing measurements, an
investigation of the potential effects of planetary tidal interac-
tions on TTVs is necessary. This may be a powerful approach at
assessing the planets’ interior structure (see e.g., Bolmont et al.
2020b) as well as other parameters, such as their current rota-
tional state, where the rotational state of the planet does indeed
depend on its interior structure parameters, such as its viscosity
and density.

In the field of study of tidal interactions on rocky super-
Earths, several works have aimed to provide a description of the
equilibrium tide and its subsequent orbital evolution scenarios by
employing advanced rheological models to describe the response
of these exoplanets to tidal stress (see e.g., Efroimsky 2012;
Ferraz-Mello 2013; Tobie et al. 2019; Walterová & Běhounková
2020 and references therein). However, to the best of our knowl-
edge, none of these advanced rheological models have been
consistently implemented in high-precision and open-source N-
body codes1, which would allow for a multiplanet simulation
of tidally induced TTVs to a good degree of accuracy. In a
recent work, Bolmont et al. (2020b) investigate the magnitude
of tidally induced TTVs for the TRAPPIST-1 multiplanet sys-
tem by employing the implementation of a classical approach
of tidal interactions based on the constant time lag (CTL) for-
mulation (Mignard 1979). However, this specific approach does

1 We emphasize that a self-consistent formulation for the coupled spin-
orbit and shape evolution considering a Maxwell rheology for the planet
was presented in Correia et al. (2014), which was extended to study (i)
three-body exoplanetary systems by Rodríguez et al. (2016) and Delisle
et al. (2017) and (ii) N-body systems by Correia & Delisle (2019).

not allow for a full exploration of the TTVs considering all the
nuances of equilibrium tide interactions in rocky bodies, such
as the temporary entrapment in spin-orbit resonances for mod-
erately high values of eccentricities and planetary viscosity (see
e.g., Makarov & Efroimsky 2013 and references therein). Such
aspects, which are consistently reproduced using more com-
plex rheological models, may indeed play an important role
in the orbital evolution of the planets and, consequently, lead
to significant changes in the tidally induced TTVs when com-
pared to scenarios obtained by employing classical theories of
equilibrium tides, such as the CTL approach.

Taking the discussions presented in Delisle et al. (2017) and
Bolmont et al. (2020b) into account as well as the lack of an
investigation of the topic of tidally induced TTVs using a more
sophisticated tidal interaction model for the planet, we revisit,
in this work, such topic in the frame of the creep tide the-
ory (Ferraz-Mello 2013; Folonier et al. 2018). For this purpose,
we implemented the tidal interactions model in the recently-
developed N-body code called Posidonius2 (Blanco-Cuaresma
& Bolmont 2017; Bolmont et al. 2020b).

The creep tide theory describes the response of bodies to
tidal stress by supposing a Newtonian creep equation for the
extended body’s shape evolution. This equation is the result
of a linear approximation of the Navier-Stokes equation for a
low-Reynolds-number flow (i.e., for cases where viscous forces
are much more significant than inertial forces, see Ferraz-Mello
2013). We consider the formulation of the theory for homoge-
neous bodies whose rotation axes are perpendicular to the orbital
plane (i.e., the zero-obliquity case). The equations ruling the
spin and orbit evolution of the planets are shown to be easy to
implement in the Posidonius code, and the response of bodies to
tidal stress depends on only one parameter, which is the uniform
viscosity coefficient of the body.

As a real example of a tidally induced TTV analysis, we
study the K2-265 b super-Earth (Lam et al. 2018). We explore
the influence of tidally induced TTVs as a function of several
parameters, such as the planet’s viscosity, eccentricity, and rota-
tional state. We also present a broad analysis of the amplitudes
of tidally induced TTVs as a function of other parameters, such
as the planet’s mass and radius values and its semi-major axis.
Such a broad analysis allows us to identify the main parame-
ters leading to bigger influences on the TTV values. Finally, we
also provide some examples of recently-discovered systems for
which tidally induced TTVs would have the highest amplitudes
for a given number of transit events. Such systems are the candi-
dates for which tidally induced TTVs can be more easily detected
by the instruments measuring transit events, such as the TESS
telescope.

This work is organized as follows: in Sect. 2, we present the
main results of the creep tide theory which were used for the
implementation in the Posidonius code and briefly give some
details regarding the numerical setup used in the calculations of
the TTVs. In Sect. 3, we investigate the magnitudes of tidally
induced TTVs for the K2-265 b planet considering the influ-
ences of tuning the parameters presenting the most significant
uncertainties in their determined values (i.e., the eccentricity,
rotational state, and viscosity of the planet). We also compare
the results for the TTVs obtained by using Posidonius with the

2 The new version of the code including the implementation of the
creep tide theory is available for download in https://github.com/
gabogomes/posidonius/tree/posidonius-creep, and the origi-
nal Posidonius website is https://www.blancocuaresma.com/s/
posidonius

A23, page 2 of 11



G. O. Gomes et al.: Influence of equilibrium tides on transit-timing variations of close-in super-Earths. I.

Fig. 1. Scheme of the geometrical setup considered in the framework of
the creep tide theory, partially reproduced from Folonier et al. (2018).
On the left, we have the pure static case in which the primary always
points toward the companion, which is at a distance r from the primary.
On the right, we have the case in which the response of the primary is
delayed due to the primary’s nonzero viscosity value. In both panels, O
is the reference direction used to measure the true anomaly (ϕ).

ones obtained by employing some analytical approximations to
generate transit timing curves. In Sect. 4, we perform a broad
exploration of tidally induced TTVs as a function of both orbital
and physical parameters of the star and the planet. In Sect. 5 we
present the discussions of the work, and Sect. 6 summarizes our
conclusions.

2. Numerical setup

In this section, we provide the essential equations of the creep
tide theory which were used in the implementation in the
Posidonius code. We also present some additional information
regarding the numerical integrator which provides the better
precision for the calculations of transit timing events.

2.1. The creep tide theory

The creep tide theory considers the deformations of an extended
body (hereafter the primary) due to the disturbing gravitational
potential due to a point-mass companion. The time evolution of
the primary’s figure is described by three parameters: the equa-
torial deformation of the body (Eρ), polar oblateness (Ez), and
the angle giving the orientation of the tidal bulge (δ), as it is
described in the scheme in Fig. 1. These three parameters are
evolved by employing a Newtonian creep equation, which is an
approximate solution of the Navier-Stokes equation in the case of
a low-Reynolds-number flow (see Ferraz-Mello 2013; Folonier
et al. 2018 for more details).

Employing the expression for the potential of the resulting
triaxial figure of the primary, we computed the forces and the
torque acting on the companion. While the radial and ortho-
radial components of the force (namely Fr and Fo) were used
to compute the orbital evolution of the system, the reaction
to the torque acting on the companion was used to compute
the rotational evolution of the primary. The calculations are
straightforward and they entail (Folonier et al. 2018)

Fr =

−
9
10

GMpM?R2
p

r4 Eρ cos 2δ − 3
5

GMpM?R2
p

r4 Ez

 r, (1)

Fo =


3
5

GMpM?R2
p

r4 Eρ sin 2δ

 (z× r), (2)

Table 1. Meaning of the parameters presented in Eqs. (7)–(12).

Symbol Meaning

` Mean anomaly
ϕ True anomaly
n Orbital mean-motion
γ Planetary relaxation factor
η Planetary uniform viscosity
d Planetary mean density
g Planetary surface gravity

Eq,k Cayley coefficient

Ω̇ =−3GM?

2r3 Eρ sin 2δ. (3)

The unit vectors r and z× r point toward the radial and ortho-
radial directions, respectively, with z being a unit vector pointing
to the same direction of the orbital angular momentum vector.
The parameters G, Mp, Rp, and M? are the gravitational constant,
mass and radius of the planet, and mass of the star, respectively.

To compute the time evolution of Eρ, Ez, and δ, we employed
the analytical solutions for these parameters in the frame of the
constant rotation rate approximation (Gomes et al. 2019), which
read

Eρ cos 2δ= ε̄ρ
∑

k∈Z
Ck[γ cos φk − (2Ω − kn) sin φk], (4)

Eρ sin 2δ= ε̄ρ
∑

k∈Z
Ck[γ sin φk + (2Ω − kn) cos φk], (5)

Ez = ε̄z +
ε̄ρ

2


∑

k∈Z
Zk(k2n2 sin k` + γ2 cos k`)

 , (6)

where

φk = k` − 2ϕ, (7)

Ck =
γE2,2−k

γ2 + (2Ω − kn)2 , (8)

Zk =
E0,k

k2n2 + γ2 , (9)

ε̄z =
5Ω2R3

p

4GMp
, (10)

ε̄ρ =
15
4

M?

Mp

(
Rp

a

)3

, (11)

γ=
Rpgd

2η
. (12)

A list containing the meaning of each symbol in Eqs. (7)–
(12) is presented in Table 1. The Cayley coefficients appearing
in Eqs. (8) and (9) (namely E2,2−k and E0,k) are eccentricity-
dependent3. Their values can be computed numerically, by
means of the integral

Eq,k(e) =
1

2π
√

1 − e2

∫ 2π

0

a
r

cos[qϕ + (k − q)`]dϕ. (13)

3 We note that the expansion in eccentricity coefficients presented in
this work converges only for eccentricities up to ≈0.40. For a formula-
tion of the creep tide theory allowing arbitrary eccentricity values, see
Folonier et al. (2018).
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Although the evaluation of high-order Cayley coefficients
is relatively straightforward by employing Eq. (13), we used
polynomial expressions for these coefficients to order e7 (see
Ferraz-Mello 2015, Appendix B.4, Tables 1 and 2) in all the
applications performed in this work since such an approxima-
tion has already been shown to be sufficient to calculate the tidal
evolution for eccentricity values up to approximately 0.4 (see
Ferraz-Mello 2013, Appendix).

We emphasize that the constant rotation rate approximation
presented in this section can be used in our study since the libra-
tions of the rotation rate which ensue in spin-orbit resonant states
do not significantly change the orbital evolution of the system
or, consequently, the TTVs. However, they may make important
contributions to the overall energy dissipated in the body (see
discussions in Folonier et al. 2018). Additionally, we point out
that the constant rotation rate solution is not a secular solution
of the creep tide equations, and short-period oscillations of the
shape coefficients are present. The shape evolution of the pri-
mary implicitly depends on the mean and true anomalies, see
Eqs. (4)–(6).

2.2. Implementation in Posidonius

To explore the tidally induced TTVs with a high-degree of
numerical precision, we implemented the creep tide theory fol-
lowing the scheme presented in Sect. 2.1 (see Eqs. (1)–(3)) in
the recently developed Posidonius code (Blanco-Cuaresma &
Bolmont 2017). We compared the performance and numerical
precision of two integrators: WHFast (Rein & Tamayo 2015),
which is a symplectic integrator considering a fixed time-step
scheme for the numerical integration of the equations of motion,
and IAS15 (Rein & Spiegel 2015), which considers an adaptive
time-step control scheme based on Gauss-Radau spacings for
the numerical integration of the equations of motion. We per-
formed some numerical experiments and verified that, although
WHFast is approximately 20 times faster than the IAS15 integra-
tor, the latter provides a bigger numerical precision for very short
timescales of evolution, which is essential for evaluating the
TTVs properly. Thus, we considered the IAS15 in all simulations
regarding the TTV calculations, where we set max(∆t) = 0.0005
days, with max(∆t) being the maximum value of the allowed
time-step of the numerical integration scheme. Such a value of
max(∆t) provides a precision of approximately 10−4 s for the
TTVs, where such a precision value was estimated by analyzing
the TTVs of a single-planet case with no disturbing forces other
than the point-mass gravitational interaction between the star and
the planet. More information regarding the numerical validation
and performance of the code can be found in the appendix.

2.3. Calculation of TTVs

To calculate the TTVs of each transit event, we employed
the same procedure described in Bolmont et al. (2020b). The
procedure is briefly described below for the sake of clarity.

We first performed a numerical simulation employing the
Posidonius code, including the effects of the tidal interactions.
Then, we used the data coming from the time right before
and right after the point in which the planet crosses a refer-
ence direction (in our case, we chose the X axis to be the
reference direction) and linearly interpolated the orbit to find
the exact time for which X = 0. Then, we performed a least-
square linear fit using the LinearRegression algorithm from
the linear_model package of scikit-learn (see Pedregosa et al.

2011). This process allows us to write the transit mid-time asso-
ciated with each transit event as T = anT + b, where T and nT
are the transit mid-times and transit number, respectively, and
the coefficients a and b are the best-fit orbital period and tran-
sit mid-time of the first transit event, respectively. Afterwards,
we computed the differences between the transit times coming
from the linear fit (i.e., the calculated transit times, Ci) and the
transit times resulting from the numerical simulations employing
Posidonius (i.e., the observed transit times, Oi). The difference
between these two quantities (namely, Oi −Ci) are the TTVs.

We note that the above procedure to obtain the tidally
induced TTVs is slightly different from the one employed by
Bolmont et al. (2020b). In our procedure, we did not calculate
the TTV difference between the pure N-body case and the case
considering the tidal interactions. The absence of that part of
the procedure is due to the fact that, since we are dealing with
a single-planet system, the expected TTV for the pure N-body
case is zero (i.e., there are no TTVs for a nonperturbed Keplerian
orbit).

3. Application to K2-265 b

In this section, we analyze the tidally induced TTV for K2-265 b.
We analyze the effect of tuning some parameters of the planet
presenting the most significant uncertainties (namely, its vis-
cosity, eccentricity, and rotation rate) on the amplitudes of the
TTVs. We also forecast tidally induced TTVs considering big-
ger numbers of transit data than the currently available number
of reported transit events.

3.1. Currently available data for the system

The K2-265 b super-Earth was discovered by Lam et al. (2018).
The authors used photometry data from the K2 mission and high-
precision radial velocity measurements from the High Accuracy
Radial velocity Planet Searcher (HARPS, Mayor et al. 2003), and
they estimated the planet radius and mass with an uncertainty of
6 and 13%, respectively. The planet orbits a G8V bright star with
an apparent magnitude of V = 11.1. The estimated radius and
mass of the planet are R = 1.71± 0.11 R⊕ and 6.54± 0.84 M⊕,
which corresponds to a mean density of 7.1± 1.8 g cm−3. Such
a mean density value is typical of rocky Earth-like planets.

Regarding the orbital parameters of the planet, Lam et al.
(2018) obtained a = 0.03376± 0.00021 AU and e = 0.084±
0.079. An estimation of the age of the system (henceforth
referred to as τ) was also made available by Lam et al. (2018) by
combining observational data and stellar evolution tracks com-
ing from the Dartmouth stellar evolution code. The resulting
estimated age for the system is τ= 9.7± 3.0 Gyr. The complete
set of parameters which were used to perform our numerical
experiments is shown in Table 2.

3.2. Estimation of the uniform viscosity value

To study the tidally induced TTV for K2-265 b, we first had to
constrain the range of values for the uniform viscosity coefficient
which are consistent with both the putative rocky composition of
the planet as well as the current eccentricity estimations avail-
able. For that purpose, we used a secular code to calculate tidal
evolution scenarios (see Appendix) to derive a mathematical
relation linking the uniform viscosity coefficient to the timescale
of orbital circularization of the planet, namely τcirc. Differently
from other works where τcirc is defined as the inverse of the
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Table 2. Physical and orbital parameters for K2-265 b and its host star
after Lam et al. (2018).

Parameter Value

Planet mass (M⊕) 6.54± 0.84
Planet radius (R⊕) 1.71± 0.11

Planet mean density (g cm−3) 7.1± 1.8
Semimajor axis (AU) 0.03376± 0.00021
Orbital period (days) 2.369172± 0.000089

Eccentricity 0.084± 0.079
Stellar mass (M?) 0.915± 0.017

Stellar rotation period (days) 32± 10
Age (Gyr) 9.7± 3.0

Notes. The values represent the median of the posterior and 68.3%
credible interval. For more details on the methods of determination of
each parameter, see Lam et al. (2018).

Fig. 2. Timescales of orbital circularization for K2-265 b. The red
squares (resp. black dots) are the data obtained from the numerical inte-
grations employing the secular code for the initially synchronous (resp.
fast-rotating) planet case. The red (resp. black) dashed curves are the
corresponding least-square fittings of the results coming from the sec-
ular code experiments. The green dashed vertical line on the left (resp.
right) is the lower value of the viscosity for which we can reproduce the
planet’s current range of eccentricity values for the initially synchronous
(resp. fast-rotating) planet case, with τ= τcirc = 6.7 Gyr.

coefficient multiplying the expression for de/dt (see e.g., Ballard
et al. 2014 and references therein), we define τcirc as the time it
would take for a planet with an initial eccentricity of e0 = 0.4
to reach a current eccentricity which is smaller than 10−3. We
emphasize that the choice of the value of e0 = 0.4 is arbitrary and
that we have tested other scenarios considering different values
of e0 and verified that such a parameter does not play an impor-
tant role in the results for τcirc, since the orbital circularization
process becomes slower for the small-eccentricity regime.

Figure 2 shows the timescale-viscosity relations resulting
from our tidal evolution numerical experiments. The black (resp.
red) curve shows the results for the initially fast-rotating (resp.
synchronous) planet scenario. The corresponding mathematical
relations between η and τcirc are

ηFR = (5.3× 1010)τ1.15
circ , (14)

ηS = (3.2× 1011)τcirc, (15)

where ηFR (resp. ηS) is the viscosity for the initially fast-rotating
(resp. synchronous) planet case (see black and red curves in
Fig. 2).

From the results shown in Fig. 2, we estimate that a viscos-
ity on the order of 1022 Pa s or higher is needed for the current
eccentricity of the planet to be within the limits estimated by
Lam et al. (2018) (i.e., for 0.005 ≤ e ≤ 0.15), supposing that the
system’s age is on the order of 6−12 Gyr (see green dashed lines
in Fig. 2). This viscosity value is in agreement with the recent
estimations of Bolmont et al. (2020a) for homogeneous rocky
Earth-like planets.

By propagating the eccentricity and age uncertainties to
the viscosity estimation presented here, we conclude that the
minimum value of the planet’s uniform viscosity is ηmin ≈
2× 1021 Pa s, where ηmin is the viscosity value for which the
planet would have a current eccentricity of 0.005 considering
an age of 6.7 Gyr. Although an estimation of the maximum
viscosity value of the planet is not possible since any scenario
with η > 1022 Pa s could lead to a current eccentricity between
0.005 and 0.15, we note that recent estimations of the viscos-
ity in planetary interiors do not exceed approximately 1024 Pa s,
and such a threshold value is only attained for very high-pressure
regimes in the interior of low-mass planets (see Tobie et al. 2019,
Table 2).

Finally, we would like to mention that the differences in the
exponents of τcirc (see Eqs. (14) and (15)) is a consequence of
the fact that the tidal response of the body depends on the forc-
ing frequency of the tidal interaction, the latter being defined
as χlmpq = |(l − 2p + q)n − mΩ| (see e.g., Efroimsky 2012; Tobie
et al. 2019). Since in the initially synchronous scenario the forc-
ing frequency is, approximately, constant throughout the entire
orbital evolution process, we expect a linear relationship between
the timescale and the viscosity. However, in the initially fast-
rotating case, the rotational evolution of the planet leads to
the excitation of different terms of the tidal forcing frequencies
which have different amplitudes, thus leading to a nonlinear rela-
tionship between the timescale of orbital circularization and the
viscosity of the planet.

3.3. The TTVs

In this section, we investigate the TTVs for K2-265 b, where we
analyze the influence of tidal interactions as well as other poten-
tially significant effects such as general relativity (henceforth
referred to as GR) and stellar rotation. To that end, we employed
the Posidonius code, where the creep tide was implemented fol-
lowing the equations presented in the previous section. For the
sake of clarity, we separate the analyses into several subsections
to discuss the influence of tuning different parameters individ-
ually. With the exception of the subsection aimed at discussing
the influence of tuning the uniform viscosity coefficient, we con-
sidered η= 1022 Pa s in all other simulations. Such a value is
consistent with both our orbital circularization timescales and
recent estimations of the viscosity in planetary interiors (e.g.,
silicate mantles with pressure values of P > 25 GPa and the
shear to bulk moduli ratio of µ/K between 0.63 and 0.90 P/K,
see Tobie et al. 2019; Bolmont et al. 2020a).

3.3.1. Interplay between apsidal precession and orbital decay

The first aspect to be discussed regarding the TTVs is the relative
contribution of orbital decay and apsidal precession. First, we
recall the expressions for the transit timings supposing two cases:
(i) a circular orbit undergoing orbital decay at rate da/dt and (ii)
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an eccentric orbit undergoing apsidal precession at rate dω/dt.
The expression for the transit timing in the first case reads as
follows (see e.g., Ragozzine & Wolf 2009)

ttra(N) = t0 + NP +
N2

2

[
6π2a2

G(M + m)

] (
da
dt

)
, (16)

where P is the mean orbital period of the planet.
For the second case, we have, to third-order expansion in the

eccentricity (see Giménez & Bastero 1995; Ragozzine & Wolf
2009 for higher-order expansions),

ttra(N) = t0 + NPS +
Pa

π

[
e (cosωN − cosω0)

+
3
8

e2 (sin 2ωN − sin 2ω0) +
1
6

e3 (cos 3ωN − cos 3ω0)
]
,

(17)

where

ωN =ω0 +
dω
dN

N, (18)

with t0 andω0 being the time and argument of the periapsis value
of the first reported transit, respectively, and N corresponding
to the transit number. Furthermore, the parameters PS and Pa
correspond to the sidereal and anomalistic periods, respectively
(see e.g., Patra et al. 2017 for more details).

As it can be seen from Eqs. (16) and (17), the contribu-
tions coming from apsidal precession and orbital decay to the
TTVs have the same dependence on the transit number, that is,
both contributions give an N2 dependence on the TTV curves
(to first order in cosωN). To disentangle between the effects of
apsidal precession and orbital decay on the TTVs, we compared
the TTVs obtained by employing two procedures: (i) the data
coming from the numerical experiments using the Posidonius
code and (ii) synthetic transit curves, which were generated by
employing Eqs. (16) and (17). For the synthetic transit curves
using Eqs. (16) and (17), we used the values of ω̇ and ȧ ensu-
ing from the Posidonius numerical experiment. In the case of
a K2-265 b with e = 0.15 and Ω = n, for instance, we have
ω̇= 0.046 deg yr−1 and ȧ =−1.91× 10−11 AU yr−1. We would
like to mention that in order to investigate the contribution of
the apsidal precession to the TTVs, we included the effects of
general relativity and stellar rotation in addition to tidal inter-
action. We verified that the most significant contribution to ω̇
comes from general relativity, which accounts for approximately
93% of the total value of ω̇. Stellar rotation accounts for approx-
imately 6% of the value of ω̇ (considering the smallest possible
rotation period for the star according to Lam et al. 2018 and a
stellar k2 of 0.1) and planetary tides account for approximately
1%. Stellar tides play the least important role, contributing less
than 1% to ω̇.

Figure 3 shows the results coming from two experiments:
one simulation carried out considering only tidal interactions
(panel on the left) and one simulation considering general rel-
ativity, rotation, and tidal interactions (panel on the right). The
contribution of tidally induced orbital decay to the TTVs were
filtered out of the orange curve in the right panel of Fig. 3 by
directly removing the TTVs generated using Eq. (16). The total
integration time was 2 yr, corresponding to approximately 307
transit events for K2-265 b. For the case on the left, we verified
that the synthetic curve generated using Eq. (16), which corre-
sponds to the blue curve, gives a TTV amplitude on the order

Fig. 3. TTVs for K2-265 b, considering η= 1022 Pa s, e = 0.15, and a
synchronous rotation rate for the planet. The results on the left were
obtained considering only tidal interactions, while the results on the
right were obtained by considering tides, rotation, and general relativity
(the contribution coming from tidal decay to the TTVs on the orange
curve were filtered out by directly subtracting the TTVs generated by
employing Eq. (16)). The blue curves in the panels are synthetic TTV
curves. The green curve in the left panel and the orange curve in the
right panel correspond to the results coming from the Posidonius code.

of 0.012 s; whereas, the synthetic curve generated using only
Eq. (17), that is to say considering only the contribution of tidally
induced apsidal precession to the TTVs, gives a TTV amplitude
of approximately 0.0001 s. The negligible role of tidally induced
apsidal precession to the TTVs can be verified by comparing the
blue solid curve and the orange dashed curve in the left panel. It
can be seen that the addition of tidally induced apsidal preces-
sion effects on the TTVs does not significantly change the TTV
curve, and the orange and blue curves in the left panel are almost
identical. However, general relativity plays a non-negligible role
in the TTV, with GR-induced apsidal precession being able to
produce a TTV amplitude of approximately 20% of the ampli-
tude obtained by considering the tidally induced orbital decay;
we recommend for the readers to compare the green curve in the
left panel and the orange curve in the right panel in Fig. 3.

Although general relativity has been shown to be non-
negligible in the context of the TTVs, its relevance was analyzed
for the case of a synchronous planet with η= 1022 Pa s and
e = 0.15. It is highly unlikely for a rocky planet with such
viscosity and eccentricity values to be in a synchronous rota-
tion rate scenario. Since tidally induced orbital decay is bigger
for nonsynchronous spin-orbit resonant states, we expect that
GR becomes negligible when considering other spin-orbit res-
onances for the planet. We now analyze how these spin-orbit
resonances affect the TTVs.

3.3.2. The role of eccentricity and planets’ rotation

As it has been discussed in several recent works regarding
tidal interactions in rocky bodies, planets with a relatively high
viscosity may undergo entrapment in spin-orbit resonances pro-
vided that the eccentricity of the planet is bigger than a threshold
value and its past rotation was such that Ω � n (e.g., see Correia
et al. 2014; Ferraz-Mello 2015 and references therein). Consider-
ing the case of the K2-265 b exoplanet with a uniform viscosity
of η= 1022 Pa s, several spin-orbit resonant states are stable if we
consider the possible eccentricity values for the planet (namely,
0.005 ≤ e ≤ 0.15).

Due to the existence of several stable resonant scenarios,
we calculated tidally induced TTVs for the planet for four
values of eccentricity, which are within the limit values estab-
lished by Lam et al. (2018). We also calculated the corresponding
spin-orbit stable configurations for each value of eccentricity,

A23, page 6 of 11



G. O. Gomes et al.: Influence of equilibrium tides on transit-timing variations of close-in super-Earths. I.

Fig. 4. Tidally induced TTV for a timespan of 2 yr (corresponding to
308 transit events), considering several spin-orbit resonances and four
values of eccentricity, as indicated in the top right corner of each panel.

where we mention that increasing the eccentricity value leads
to the onset of possible higher-order stable spin-orbit resonant
states (for details regarding the determination of stable spin-
orbit resonances, see e.g., Correia et al. 2014; Ferraz-Mello 2015;
Gomes et al. 2019 and references therein). The results of our
analysis are shown in Fig. 4. In the figure, we can deduce both
the influence of the eccentricity as well as the rotation rate of the
planet on the amplitude of the TTVs (henceforth referred to as
amp(TTV)), with

amp(TTV) = max(TTV) −min(TTV). (19)

By comparing the orange curves in each panel of Fig. 4, it
can be seen that the eccentricity value strongly affects the tidally
induced TTVs. We verified that amp(TTV) scales with eα, where
α= 1, 2 and 4 for the synchronous, 3/2 and 2/1 spin-orbit reso-
nances, respectively. Moreover, α increases monotonically with
Ω/n, the latter usually being referred to as the order of the spin-
orbit resonance. At this point, it is worth mentioning that the
resulting linear dependence of the amplitude of the TTVs with
the eccentricity in the synchronous rotating planet case is con-
sistent with the predictions of Ragozzine & Wolf (2009). We did
not perform a study regarding the eccentricity dependence of the
amplitudes of the TTVs for higher-order spin-orbit resonances
(such as the 5/2 and 3/1 resonances) since such spin-orbit res-
onances are only maintained at either high eccentricity values
with e > 0.15, which are incompatible with the eccentricity esti-
mations of K2-265 b, or very big viscosity values, which are
inconsistent with our estimations of Sect. 3.2. Another aspect
which can be seen from Fig. 4 by comparing, for instance, the
curves in the top left panel is that tidally induced TTVs are
negligible for the synchronous rotation and high-order spin-orbit
resonant states (e.g., the 5/2 and 3/1 resonances) when compared
to the 3/2 and 2/1 resonances (see orange and green curves in
each panel).

3.3.3. Impact of the uniform viscosity coefficient

Although the combination of eccentricity and age estimations
of the system has allowed for a good estimation of the planet’s

Fig. 5. Effect of the viscosity value on the tidally induced TTV for K2-
265 b with e = 0.15, Ω/n = 1.5, and a total transit number of 2 yr. We
considered variations of η between the minimum value coming from
eccentricity evolution timescale estimations and the maximum value
coming from the reference values of Tobie et al. (2019), which were
obtained by solving the internal structure equations for the mantle of
planets composed by high-pressure silicates.

viscosity, we must analyze the influence of tuning the viscosity
value of the planet on the tidally induced TTVs since the viscos-
ity of the planet was estimated with a given uncertainty. For that
purpose, we consider viscosity values within the uncertainties
discussed in the Sect. 3.2.

Figure 5 shows the TTVs curves for three numerical experi-
ments where we tuned the viscosity value of the planet. We can
see that the viscosity is the parameter playing the least impor-
tant role when compared to the influence of the eccentricity and
rotation rate on the amplitudes of the tidally induced TTVs. In
Fig. 5, it can be seen that by increasing the viscosity by a factor
of 100, the amplitude of the tidally induced TTVs decreases by
a factor of approximately 3. The influence of the viscosity value
on the TTV amplitude is even weaker for higher-order spin-orbit
resonances, as it was verified by some numerical experiments for
the 2/1 and 5/2 spin-orbit resonances.

3.4. Conditions for potentially observable TTVs

Since we have analyzed the dependency of the tidally induced
TTVs with the parameters of the K2-265 system carrying the
biggest uncertainties, we can now establish for which conditions
we would have the biggest amplitude of tidally induced TTVs
(i.e., the scenarios leading to the most easily detectable tidally
induced TTVs with the smallest amount of transit data). Figure 6
shows the results concerning such an analysis for the specific
case of the 3/2 spin-orbit resonant state, which is the resonant
state presenting the biggest TTVs. The curves in the graph give
the eccentricity and transit number values leading to the corre-
sponding amplitudes of the TTVs (see labels in the upper right
corner of the figure). The dashed brown line corresponds to the
maximum value of the eccentricity of K2-265 b estimated by
Lam et al. (2018).

From the results shown in Fig. 6, we can conclude that
approximately 6 yr (corresponding to approximately 1000 transit
events) of transit data would be necessary for a TTV amplitude
on the order of 30 s to be obtained, considering that the planet’s
eccentricity value is the maximum possible value corresponding
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Fig. 6. Relation between eccentricity and transit number giving the
amplitudes of TTVs indicated in the labels. In all cases, we consid-
ered the 3/2 spin-orbit resonance, which gives the highest amplitudes
of the TTVs when compared to all the other rotational configurations.
The maximum transit number shown in the figure (i.e., 2000 transits)
corresponds to approximately 13 yr of transit events. More discussions
are presented in the main text.

to the estimations of Lam et al. (2018). However, if a precision of
approximately 10 s for transit measurements is achieved, which is
the case for the TRAPPIST-1 system (see discussions in Bolmont
et al. 2020b; Agol et al. 2021), we predict that approximately
3.5 yr of transit data would suffice to identify tidally induced
TTVs. The follow-up of transit photometry data in the future
would then be an essential tool to experimentally identity such
effects.

It is worth mentioning that we performed some numerical
experiments to evaluate TTVs induced by the stellar tide as well
as the stellar flattening resulting from the stellar rotation, where
the stellar rotation period of 32.2 days was used in our simu-
lations, following Lam et al. (2018). It was verified that these
effects are much smaller than tidally induced TTVs by the planet
even in the case of a homogeneous star (i.e., with a fluid Love
number of kf = 3/2). An analysis of the influence of the gen-
eral relativity on the induced TTVs was also performed. We also
verified that these effects are negligible when compared to the
planetary tidally induced TTVs.

Although the results presented in this section show that the
follow-up of transit data for the K2-265 b could potentially lead
to observable TTVs in the near future, we now perform a broad
exploration of the tidally induced TTVs as a function of the
system’s orbital and physical parameters to have a more com-
prehensive view of the most important parameters influencing
the TTVs.

4. Broad exploration of the parameters space

In the previous section, we have analyzed tidally induced TTVs
for the K2-265 system and concluded that, with the current
amount of available data, it is not yet possible to detect tidally
induced TTVs. In this section, we explore the influence of other
parameters on the values of the tidally induced TTVs with the
goal to determine for which exoplanetary systems we would be
able to detect such effects with a smaller amount of transit data.

Figure 7 shows the results regarding the exploration of the
tidally induced TTVs as a function of four parameters (semi-
major axis, planet mass, planet radius, and stellar mass; see

Fig. 7. Broad exploration of the TTV as a function of four parame-
ters: (a) planetary mass, (b) planetary radius, (c) stellar mass, and (d)
semi-major axis values. We considered a total timespan of 2 yr in all
the simulations. In each panel of the figure, we tuned each parameter
individually and considered the nominal values of the K2-265 b system
for the remaining ones (see Table 2). Moreover, in all cases shown here,
we considered a 3/2 spin-orbit resonant state for the planet as well as an
eccentricity of 0.15 in order to maximize the effects of the TTVs.

labels and caption of Fig. 7). In all panels, the dashed red line
corresponds to the case of the K2-265 b planet using the param-
eters of Table 2. For the bottom panels, we used the normalized
transit number to perform the plots since changing the stellar
mass and semi-major axis leads to considerable differences in the
orbital period, which in turn causes alterations in the total tran-
sit number, even though the total time of evolution remains the
same (namely, 2 yr). We can clearly see that the most important
parameters influencing the amplitudes of the TTVs are the stellar
mass and the semi-major axis (see panels c and d in the figure).
The planetary radius value also strongly affects the amplitude
of the TTVs. However, since super-Earths are believed to have
radii between 1 and 1.8 Earth radii, according to recent discus-
sions (see e.g., Fulton et al. 2017), the experiments performed
in panel b for Rp = 2 R⊕ and Rp = 3 R⊕ (see orange and green
curves) are merely exploratory.

The factor playing the least important role in the TTVs is
the planetary mass. Tuning this type of parameter by a factor of
10 leads to a difference in the TTVs of a factor of 3. Moreover,
we emphasize that changing the planetary mass leads to a direct
change in the relaxation factor value since the planetary mass
directly affects the planet mean density value (see Eq. (12)) and
its mean equatorial prolateness. Thus, the influence of tuning the
planetary mass on the tidally induced TTVs is much more com-
plex than the influences of the other three factors which were
considered in this section, and a proportionality relation between
the amplitude of the TTVs and the tuning of the planetary mass
may not be possible (see orange and green curves in panel a of
Fig. 7).

5. Discussions

In this section, we discuss several aspects of the results obtained
in Sects. 3 and 4. For the sake of clarity, the discussions are
separated into subsections.
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5.1. TTVs for K2-265 b

Regarding our numerical experiments of the TTVs for K2-265 b,
we verified that the most important factors ruling the ampli-
tudes of the TTVs are the eccentricity and spin-orbit resonance.
Regarding the spin-orbit resonance influence on TTVs, we veri-
fied that although synchronous rotation leads to small-amplitude
TTVs, planets in low-order spin-orbit resonances (especially the
3/2 and 2/1 resonances) may present relatively high amplitudes
of tidally induced TTVs, where the main component causing
the tidally induced TTVs for nonsynchronous rotation cases is
the orbital decay of the planet. Other effects such as tidally
induced apsidal precession and GR-induced apsidal precession
were verified to produce TTVs two to three orders of magnitude
smaller than the TTVs caused by tidally induced orbital decay.
The uniform viscosity coefficient was shown to cause a relatively
small variation in the amplitudes of TTVs when compared to the
effects of tuning the rotation and eccentricity values.

In what concerns the predictions for future TTVs consider-
ing more transit data, we have shown that tidally induced TTVs
may be able to cause deviations of transit timings on the order of
30–70 s, considering a 10-yr timespan. These results indicate that
tides can be an important source of additional TTVs which are to
be included when modeling transit data using a longer baseline
in the case of close-in planetary systems.

5.2. Potential confusion with other effects generating TTVs

As it has already been discussed in Sect. 3, the TTVs induced
by tidal interactions are much more significant when the planet
is trapped in a nonsynchronous spin-orbit resonance, where the
main component being responsible for the TTVs is the orbital
decay of the planet. However, when the planet is trapped in a
synchronous rotation, the TTV induced by orbital decay is less
significant, and the TTV induced by the apsidal precession has a
non-negligible role in the total TTV. The most significant effect
causing apsidal precession-induced TTVs is the GR, with ω̇(GR)

being at least one order of magnitude bigger than any other
effects causing apsidal precession.

Although GR has been shown to play a non-negligible role
in the TTVs only in the case of synchronous rotation, it is pos-
sible that GR and tides provide the same effects on TTVs if
the mass and radius of the planet under study lead to relatively
small tidally induced TTVs. In such specific cases, the interplay
between GR and tides and their influences on the light curves
of exoplanets can be studied by analyzing occultation curves as
well as transit curves. As it has been discussed by Patra et al.
(2017) and Yee et al. (2020), for example, the shape of the
timing variation curves of transits and occultations differ when
considering the contributions of apsidal precession and orbital
decay. Figure 8 shows an example of occultation timing variation
(OTV) curves, corresponding to a homogeneous K2-265 b on a
synchronous rotation rate regime with e = 0.15 and η= 1022 Pa s.

Analyzing the contributions coming from orbital decay and
apsidal precession to the OTVs shown in Fig. 8, we can see
that the occultations provide a way to disentangle between these
effects when they have comparable contributions to the tim-
ing variations. We emphasize that the use of occultation timing
analysis to disentangle between apsidal precession and orbital
decay-induced timing variations has already been employed in
Yee et al. (2020) to confirm the orbital decay of WASP-12 b,
and we briefly present the curves in Fig. 8 to show that tidal
interactions and GR can be analyzed separately if occultation
data are available (i.e., there is no confusion between the two

Fig. 8. Occultation timing variations considering the same simulations
of Fig. 3, i.e., a K2-265 b with e = 0.15, a synchronous rotation rate, and
a viscosity of η= 1022 Pa s. The panel on the left shows the contribution
of orbital decay and tidally induced apsidal precession to the OTVs,
while the panel on the right shows the contribution of apsidal precession
induced by three effects to the OTVs (i.e., for the latter, the effects of
GR, tides, and rotation were considered). The synthetic OTV curves
were generated by considering Eqs. (5) and (8) given in Sect. 4 of Patra
et al. (2017), corresponding to P17 in the labels of the figure.

contributions if both transits and occultation curves are avail-
able). However, we emphasize that the only case for which
apsidal precession can have a non-negligible effect on the tim-
ing curves corresponds to a synchronous rotation, in which
case the orbital decay rate is much smaller when compared to
nonsynchronous resonant states. In such a specific case, model
comparison tools, such as the analysis of the Bayesian informa-
tion criterion (see discussions in Patra et al. 2017 and Yee et al.
2020), have to be employed to choose between models with dif-
ferent numbers of free parameters (e.g., a model considering
a fixed orbital decay rate and a model considering an eccen-
tric orbit with fixed values for the apsidal precession rate and
argument of periapsis).

5.3. Broad exploration of parameters space

The analysis performed in Sect. 4 regarding the broad explo-
ration of tidally induced TTVs as a function of both planetary
and stellar parameters has allowed for the conclusion that the
main components leading to significant changes in TTV ampli-
tudes are the stellar mass, planetary radius, and semi-major axis.
The planetary mass has been shown to present little influence
on the amplitudes of the tidally induced TTVs. Moreover, the
results presented in Sect. 4 show that the most promising plane-
tary systems for which tidally induced TTVs would be detectable
are the ones for which the orbital period is on the order of
2 days or less, and in which the planet can have a moderate
eccentricity on the order of 0.1 or higher, thus allowing for non-
synchronous spin-orbit resonant states to be maintained until the
present, thus enhancing the amplitude of tidally induced TTVs
when compared to the synchronous rotation rate case.

We emphasize that all calculations presented in this work
for the tidally induced TTVs considered that the planet
adjusts to hydrostatic equilibrium following a Newtonian creep
equation for its shape evolution. We also neglected forced libra-
tions of the rotation rate by considering the constant rotation
rate approximation of the creep tide theory4. Considering that
the planet has permanent components of the flattenings as a
consequence of, for example, reorientation or despinning (see
e.g., Matsuyama & Nimmo 2008, 2009), this may lead to even

4 For planets trapped in spin-orbit resonances, forced librations can
have an important role on the tidal heating of the planets (see e.g.,
discussions in Efroimsky 2018; Correia & Delisle 2019).
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bigger TTVs5. Detecting these permanent shape-induced TTVs
may be essential at characterizing planetary interior structures as
well as studying their past orbital and rotational configuration.

6. Conclusion

The most important findings of this work regard the analysis
of the tidally induced TTVs for nonsynchronous spin-orbit
resonant states. For a given eccentricity value, nonsynchronous
spin-orbit resonances lead to a faster tidally induced orbital
evolution process when compared to synchronous rotation rate
cases. As a consequence, planets in nonsynchronous spin-orbit
resonances migrate faster and may present larger TTVs than the
ones generally predicted by employing classical expressions to
calculate the orbital decay rate induced by tides; we refer to clas-
sical expressions as the ones generally based on the CTL model,
which assumes that the only possible equilibrium rotation
state is pseudo-synchronism. Moreover, we have discussed that
when occultation timing data are available in addition to transit
timing data, the potential degenerescence of tidal interactions
with other effects inducing timing variations (such as general
relativity and stellar rotation) can be broken by analyzing the
occultation timing variations. We also emphasize that in all
cases of nonsynchronous rotation, the orbital decay-induced
TTV is at least 2 orders of magnitude bigger than the apsidal
precession-induced TTV.

Another discussion that ensued from this work is the pos-
sibility of the future detection of tidally induced TTVs caused
by orbital decay for other exoplanetary systems containing a
close-in rocky planet with a non-negligible eccentricity. A quick
estimation of the tidally induced TTVs as a function of the
semi-major axis in the case of a moderately eccentric planet
(with 0.1 < e < 0.2) in the 3/2 spin-orbit resonance allows
us to conclude that, for planets with a ≤ 0.02 AU, an ampli-
tude of the tidally induced TTVs on the order of 20−80 s
may be reached even for small observation timescales (on the
order of 2−3 yr), provided that the stellar mass is between
0.5 and 1.0 Solar masses. Some of the (putative) single-planet
systems in which the planet satisfies such a semi-major axis
criterion include, for instance, LHS-3844 b (Vanderspek et al.
2019) and L 168-9 b (Astudillo-Defru et al. 2020). Since very
close-in planets are believed to have small eccentricities due to
tidally induced orbital circularization processes, the search for
the detection of tidally induced TTVs for Earth-like rocky plan-
ets may be more advantageous for planetary systems with at
least one more planetary companion. In this case, eccentricity
excitation as a consequence of planet-planet gravitational inter-
actions could lead to moderate eccentricities for the inner planet.
Consequently, nonsynchronous spin-orbit resonances may be
maintained until the present. Some of the multiplanet systems
which can present this configuration are K2-38 b-c (Sinukoff
et al. 2016; Toledo-Padrón et al. 2020), LTT 3780 b-c (Nowak
et al. 2020; Cloutier et al. 2020), and TRAPPIST-1 (Gillon et al.
2017). The new version of the Posidonius code introduced in
this work, which has been shown to provide stable and precise
5 To take permanent components of the flattenings into account, a dif-
ferent implementation of tidal interactions must be used. In the frame of
the creep tide, for instance, we would have to solve three additional first-
order differential equations, dictating the shape evolution of the body
instead of supposing the constant rotation rate approximation, which
automatically neglects forced librations of the rotation rate (see e.g.,
discussions in Folonier et al. 2018; Gomes et al. 2019).

results, can thus be a powerful tool for studying the cases of these
multiplanetary systems, for which analytical formulations of the
transit and occultation timings may not be able to capture all the
aspects of planet-planet perturbations.
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Appendix A: Code verification and performance

The Posidonius code considers the effects of additional forces
other than N-body point-mass interactions by directly imple-
menting the contribution of these effects in the force components
acting on each body of a given system. Both a symplectic
integration scheme with a fixed time-step (WHFast integrator)
and an integrator with a variable time-step integration scheme
(IAS15) are available for use in the code.

To test the proper functioning of the implementation of the
creep tide theory in the Posidonius code, we compared the results
coming from it with the ones coming from the use of a secular
code giving the spin-orbit evolution of the body. The equations
for the secular evolution are

ȧ =
R2nε̄ρ

5a

∑

k∈Z

3(2 − k)
γ(ν + kn)E2

2,k

γ2 + (ν + kn)2 −
γk2nE2

0,k

γ2 + k2n2

 , (A.1)

ė =−3GMR2ε̄ρ

10na5e

∑

k∈Z

P(1)
k

γ(ν + kn)E2
2,k

γ2 + (ν + kn)2 +
P(2)

3

γk2nE2
0,k

γ2 + k2n2

 ,

(A.2)

Ω̇ =−3GMε̄ρ

2a3

∑

k∈Z

γ(ν + kn)E2
2,k

γ2 + (ν + kn)2 , (A.3)

where ν= 2Ω − 2n is the semidiurnal frequency of the primary,
the coefficients Pk are eccentricity-dependent coefficients given
by

P(1)
k = 2

√
1 − e2 − (2 − k)(1 − e2), (A.4)

P(2) = 1 − e2, (A.5)

and the coefficients Eq,k are the eccentricity-dependent Cayley
coefficients. We can see that no short-period components exist
(i.e., components depending on the true or mean anomaly), since
they were already averaged out.

Figure A.1 shows an example of the results of three simula-
tions considering the spin and orbit evolution of a homogeneous
K2-265 b with a viscosity of η= 1017 Pa s; the choice to consider
such a value for η relies on the fact that lower values of η lead
to bigger amplitudes of the short-period oscillations of Ω, thus
representing the best scenario for identifying potential changes
introduced by the averaging of the equations of motion, which
are performed in the frame of the secular model.

We can see several characteristics which are classic of tidal
evolution scenarios in Fig. A.1: firstly, the rotation of the planet
is damped to a 2/1 spin-orbit resonant state. This process is fol-
lowed by orbital shrinking and eccentricity damping until the
2/1 spin-orbit resonance is no longer stable. The rotation then
evolves to the 3/2 spin-orbit resonance while the eccentricity
and semi-major axis continue to decrease; we emphasize that the
evolution of the orbit takes place on a timescale that is much
bigger than the evolution of the rotation. The endpoint of tidal
evolution is achieved when both orbital circularization and rota-
tional synchronization take place. We can see that the values of
the orbital elements at the endpoint of the tidal evolution are

Fig. A.1. Semi-major axis, eccentricity, rotation, and angular momen-
tum evolution of four simulations (see the labels in the panels). Solid
lines correspond to simulations using the Posidonius code, and the green
dashed line corresponds to the simulation using the secular code. The
red dashed line shown in the panels of the orbital and rotational evolu-
tion of the planet corresponds to the predictions of the final values of the
spin-orbit configuration of the planet, based on total angular momentum
conservation.

in very good agreement with the analytical estimations coming
from the angular momentum conservation of the system, namely
astat = a0(1− e2

0) (see red dashed curve in the top panel on the left
in Fig. A.1).

From the point of view of angular momentum conservation,
we can see that the Posidonius code conserves it with a much
better precision when compared to the secular code (see bot-
tom panel on the right in Fig. A.1). Additionally, we verified that
the WHFast code better conserves the angular momentum for a
sufficiently long timescale, whereas the IAS15 integrator gives
more precise results for short-term evolution scenarios. Lastly,
we comment that the speed of integration is much slower for
the IAS15 when compared to the WHFast integrator. The ratio
of time taken to evolve the orbits with the IAS15 and WHFast
integrators is approximately 25, which is an expected difference
in integration time given the adaptative time-step scheme of the
IAS15 integrator. We note that the value of the constant time-
step chosen for the WHFAST was set so that it would be near
the mean value of the time-step chosen by the adaptative time-
step algorithm of the IAS15 integrator (for the latter case, we
verified that the time-step oscillated between 0.08 and 0.13 days
for the simulation shown in Fig. A.1). We also performed some
experiments by tuning the time-step of the WHFast integrator
and verified that the results obtained by considering a time-step
smaller than 0.1 days do not change when compared to the case
in which the time-step was chosen to be 0.1 days (i.e., the case
corresponding to the blue curve in Fig. A.1). For a more com-
prehensive discussion on the precision and error analyses for
symplectic integrators, see Hernandez & Dehnen (2017).
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Chapter 9

Conclusion

In this thesis, we presented several applications of the creep tide theory to study the

spin and orbital evolution of Solar System bodies and exoplanetary systems. The thesis

was thus focused on providing the essential equations for computing the time evolution of

the spin and orbital parameters, without extensive theoretical developments of the creep

tide theory. For each application we considered, different approximations of the creep

tide were used and we pointed out which are the limits of applicability of each formulation

(e.g., the pseudo-synchronous approximation or the constant rotation rate approximation).

The theoretical aspects used in the applications were thus based on other previous works,

mainly the works of Folonier et al. (2018); Gomes et al. (2019); Gomes and Ferraz-Mello

(2020); Ferraz-Mello et al. (2020).

For the application we performed to Mercury, we focused on the study of the planet’s

rotation and figure evolution. We studied the dependence of the equilibrium spin-orbit

resonant states with the eccentricity value. Since we know that Mercury’s current rotation

rate is entraped in the 3/2 spin-orbit resonance, we were able to establish some constraints

to Mercury’s relaxation factor value. Using the value found for Mercury’s relaxation factor

to analyse its shape evolution leads to a discrepancy in the values observed for the equa-

torial prolateness and polar oblateness with respect to the corresponding values predicted

by the creep tide theory by approximately 2 orders of magnitude. We have also compared

the results of the creep tide theory for the flattenings with the results obtained by other

versions of the Darwin theory. Such comparison allowed us to conclude that no theories

based on the hydrostatic equilibrium of Mercury are able to reproduce its current values

of flattening coefficients. Thus, mechanisms other than tidal interactions are necessary to

explain Mercury’s current shape.
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In what concerns the applications we performed to study exoplanetary systems, we

firstly considered an application for the study of the secular evolution of a two-body systems

(more specifically, a hot Jupiter orbiting M, K, G and F stars). We considered the effects

of both tidal interactions as well as the magnetic wind braking of the stellar rotation.

Our results have shown that, for hot Jupiters orbiting M, K and G stars, the magnetic

wind braking is a dominant mechanism which significantly slows the stellar rotation and

leads to rapid planetary orbital decay. Thus, hot Jupiters are not likely to survive around

these stars and it is expected that such systems are relatively young (otherwise, planet

engulfment takes place and the planet no longer orbits the star). One special case which

presented optimistic scenarios for the hot Jupiter survival is the case of a F host star. In

such case, the magnetic wind braking is absent and the stellar rotation evolves only due

to tidal interactions. Provided that the initial rotation rate of the star is sufficiently high

(of the order 2.3 days of rotation period), the planet can be pushed from an initial orbital

configuration for which Porb ≈ 2 days to a final configuration with Porb ≈ 8 days. We

have also verified that estimations of the quality factor of some stars given by Penev et al.

(2018) correspond to relaxation factor values that vary between 1 and 100 s−1, with only

one outlier for which the relaxation factor exceeds 103 s−1.

After the application of the creep tide to study single-planet systems containing hot

Jupiters, we considered an application to secularly-evolving exoplanetary systems contai-

ning potentially habitable exoplanets. We considered applications to LHS-1140 b-c and

K2-18 b-c. For the LHS-1140 b-c exoplanetary system, the results of the study allow us to

conclude that the planets are probably in nearly-circular orbits, provided that the value of

the relaxation factor of the inner planet is close to the value estimated for the solid Earth,

which is 0.9×10−7 s−1 ≤ γEarth ≤ 3.6×10−7 s−1. Since the eccentricities of the planets are

not well constrained from observations, we cannot rule out the possibility that the planets

are in eccentric orbits. Thus, we rely on future observations which can better constrain the

planetary eccentricities to have more precise and concrete conclusions regarding the pla-

netary relaxation factor values. For the application to the K2-18 b-c exoplanetary system,

the current lack of knowledge of the planetary radius and mass value of the inner planet

led us to perform an analysis of the scenarios of orbital evolution considering two cases:

a rocky Earth-like K2-18 c (hereafter case 1) and a gaseous K2-18 c (hereafter case 2).

Combining the analysis of the results considering cases 1 and 2 as well as the estimation
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of the eccentricity of K2-18 b, we conclude that the inner planet cannot have a relaxation

factor value which is close to the value of the Earth, since such hypothesis is inconsistent

with the current eccentricity value of the planets. To conciliate the current eccentricity

estimation of K2-18 b with the relaxation factor value of the inner planet, we need to have

two specific regimes of values for γc. Either γc is very small, of the order 10−10 s−1, or γc

is very large, of the order 1− 10 s−1 (which is a typical value of mini-Neptunes).

Additionally to the applications we considered to study secularly-evolving systems, we

considered an implementation of the creep tide equations in the Posidonius N-body code.

Such an implementation significantly increases the applicability of the creep tide theory

since it allows us to study systems in any configurations (provided that the system is copla-

nar and the eccentricities are not above 0.4). We have tested the efficiency and consistency

of the results by performing two applications. Firstly, we considered a single-planet sys-

tem, namely K2-265 b. We compared the results of spin-orbit simulations using Posidonius

with the results coming from a secular evolution code (which calculates the evolution of

the semi-major, eccentricity and rotation rate of the extended body). We also compared

the results between the two main integrators currently available in Posidonius: WHFast

and IAS15. We verified that the integrators are in very good agreement, as well as with

the secular evolution code results. However, we verified that, in terms of computational

efficiency, WHFast is approximately 20 times faster than IAS15. The second application

we performed considered the CoRoT-7 b-c exoplanetary system, where we explored the

scenarios of orbital evolution which could lead to the same eccentricity pumping evolution

scenario as the ones described in Rodŕıguez et al. (2016). We have verified that, since the

current eccentricities of the planets are moderate (with e = 0.12 for both planets), the

planets relaxation factor values cannot ben in the range 1013 − 1017 Pa s. If this was the

case, the planets eccentricities would have already been damped to values smaller than

0.01. The current eccentricity values of the planets are more consistent with very small

(of the order 1010 Pa s) or very large (of the order 1019 Pa s) values for the planets visco-

sities, which is consistent with the results presented in Rodŕıguez et al. (2016). In both

these cases, the eccentricity mechanism takes place and causes eccentricity growth, which

is consistent with the current eccentricity estimations for the planets.

Finally, we performed an application of the new Posidonius version containing the creep

tide equations to study tidally-induced transit timing variations (TTVs). Such field of



130 Chapter 9. Conclusion

study is relatively new, with the first statistically significant tidally induced TTV detected

presented in Yee et al. (2020). We have considered the case of K2-265 b , a small close-in

super-Earth with a possible eccentricity value of e = 0.15. We performed analyses of TTVs

for different spin-orbit configurations, such as the 3/2, 2/1 and 5/2 spin-orbit resonances.

We verified that, among all possible resonant states, the 3/2 resonance provides the most

optimistic values for the tidally-induced TTVs. Moreover, we verified that the major

contribution to the TTVs comes from the orbital decay of the planet induced by tidal

interactions. This effect is much larger than other generally considered effects such as the

general relativity or the stellar oblateness. Even in the cases where general relativity effects

are comparable to tidal effects to the TTVs, we verified that using occultation timing

variations (OTVs) can break the degenerescence between these effects, since they have

contributions which are opposite in sign to the OTVs. In terms of quantitative results, we

verified that it is not yet possible to detect tidally-induced TTVs for K2-265 b considering

the current timespan of transit event results we have. In terms of numerical values for the

physical and orbital parameters of exoplanetary systems for which the detection of tidally-

induced TTVs would be optimistic, we concluded that, for planets with a semi-major axis

smaller than 0.02 AU, an amplitude of the tidally induced TTVs on the order of 20− 80 s

may be reached even for small observation timescales (on the order of 2− 3 yr), provided

that the stellar mass is between 0.5 and 1.0 Solar masses.
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Appendix A

Structure and usage of Posidonius

In this Appendix we discuss the structure and installation guide of the Posidonius code,

as it is currently given in this GitHub repository. Such a version contains all the impro-

vements in the numerical integrator subroutines (such as corrections for non-conservative

forces when using WHFast) as well as optimizations for the inclusion of the tidal inte-

ractions using the creep tide equations. We mention that several parts of this Appen-

dix are based on the official Posidonius installation and usage guide made available at

https://github.com/marblestation/posidonius.

A.1 Installation of requirements

Posidonius uses both Rust and Python programming languages. Thus, it is mandatory

that both a Rust compiler and a Python interpreter are installed in the local machine.

For Rust, one can perform the download of the compiler in the link https://rustup.rs/,

while Python interpreter and package manager can be installed using anaconda through

https://www.anaconda.com/products/individual.

After installing both Python and Rust, the Posidonius package must be installed from

the GitHub repository. To clone the GitHub repository to the local machine, use git

clone https://github.com/gabogomes/posidonius.git. Afterwards, the directory will be

downloaded in a new directory in the local machine. The Posidonius code is then ready to

be installed.

https://github.com/gabogomes/posidonius/tree/posidonius_creep_v2
https://github.com/marblestation/posidonius
https://rustup.rs/
https://www.anaconda.com/products/individual
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A.2 Installation of Posidonius

First, we should install the N-body simulator by running, from the current directory,

the following line of command in the command line interface:

cargo install --path . --force.

The executable will be copied into HOME/.cargo/bin/. Then, install the python pac-

kage to create cases by running:

curl -O https://www.cfa.harvard.edu/~sblancoc/posidonius/input.tar.gz

tar -zxvf input.tar.gz && rm -f input.tar.gz

python setup.py install --user

A.3 Code structure and functioning

The Posidonius package is composed by two parts: the Python wrapper (which is used

to plot results, prepare initial conditions files and transform binary files in text files), and

the Rust source code (which performs the numerical integrations)1. We show (in a diagram

format) the structure of the two aforementioned parts of Posidonius in Fig. A.1

It is important to comment that the most important directory when it comes to adding

new effects in Posidonius (which is a relatively easy task since the effects are completely

uncoupled) is the effects directory in both the src and the posidonius directories. For

instance, to add the creep tide equations we modified the files effects/tides which, for the

sake of organization, has been divided in two files (in the Rust src directory) for a better

organization and generalization in case other tidal models are added in the future.

Regarding the functioning of the code, we provide in Fig. A.2 a diagram showing the

functioning of the code from the initial conditions file until the output procedure of the

time evolution data.

In a more detailed description, we have: the initial python script file containing the spe-

cifications of the simulation (orbital elements, number of bodies of the system, interactions

to be taken into account, timestep for writing data in the output files and numerical inte-

1 Additional directories, functions and modules exist, although they are used mainly for development

and testing the code. Thus, they are not explicitly cited or described here.
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Figure A.1: Structure of Posidonius: src directory (with Rust codes for integration), the

Python wrapper of Posidonius Rust code (in the middle) and the main script files for gene-

rating plots (on the top, in green) and initial condition files (on the bottom, in purple).

grator to be used). The python script is then transformed in a JSON file which is readable

by the Rust code. By executing the Rust code, the numerical integration is performed all

the way in the Rust language, without interactions with the Python wrapper (although

it is possible to generate Python plots of preliminary data in the middle of an ongoing

numerical integration). Afterwards, a Python scripts transforms the binary format files

(containing the time evolution of the system parameters) into text files and plots.

A.4 Performing simulations

Now we discuss the specific commands to be used in the command line to perform the

simulations using Posidonius. The Posidonius simulations are performed based on a initial

conditions file which must be given in JSON format, which is generated by means of a

Python script containing the initial conditions and physical parameters of the system. For

instance, to generate a initial conditions JSON file corresponding to one of the simulations

presented in Gomes et al. (2021), one can use

python cases/Gomes_et_al_2021/K2-265b.py target/K2-265b.json

To run a simulation based on the file generated after the compilation of the code above,
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Figure A.2: Functioning of Posidonius, from the top to the bottom. More details are given

in the main text.

one can use

posidonius start target/K2-265b.json target/K2-265b.bin

target/K2-265b_history.bin

To resume a simulation which was previously stopped, we can use

posidonius resume target/K2-265b.bin target/K2-265b_history.bin

Note that, differently from the start command, we do not need the JSON initial condi-

tions file to resume a simulation, since the initial conditions are taken as the last timestep

values of the system, which are written in the binary history file.

A.5 Plotting and analysing results

To plot results of the spin and orbital parameters of a given simulation, we can use
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python scripts/explore_history.py target/K2-265b.json target/K2-265b_history.bin

To explore more specific results such as mean-motion resonances which may be present

in the system, we can type

python scripts/explore_timed_resonances.py target/K2-265b_history.bin

We would like to mention that the Python scripts to generate figures and plots are well

documented and can be modified by the user to select specific parameters to be plotted in

the figures, according to the specific need.
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