Cosmologia Gastão B. Lima Neto IAG/USP Curso de extensão 3ª idade 04/06/2024

O que é cosmologia?

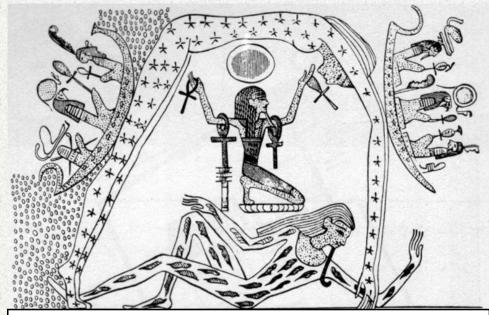
 Ciência que estuda o Universo, seu conteúdo, sua natureza e sua história.

• Perguntas:

- Como surgiu o Universo?
- Qual é sua idade e tamanho?
- Do que o Universo é feito?
- O que vai acontecer com o Universo?
- Quando e como surgiram as estrelas e as galáxias?

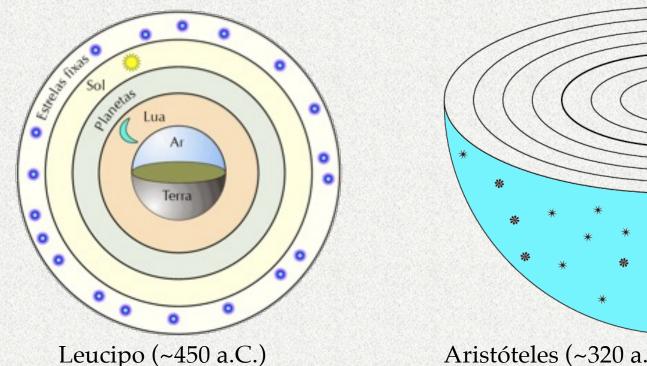
O que é cosmologia?

- A palavra **cosmologia** vem do grego: *kosmos* (ordem, harmonia, beleza) + *logia* (estudo, discurso).
- Os gregos, desde Pitágoras pelo menos, usavam a palavra *kosmos* no sentido de **universo**.
- A palavra kosmos também está na origem da palavra cosmético.



Cosmologia

- Questão sempre presente em todas as sociedades, desde a pré-história.
- Na Antiguidade, a cosmologia se confundia com a mitologia e superstição.

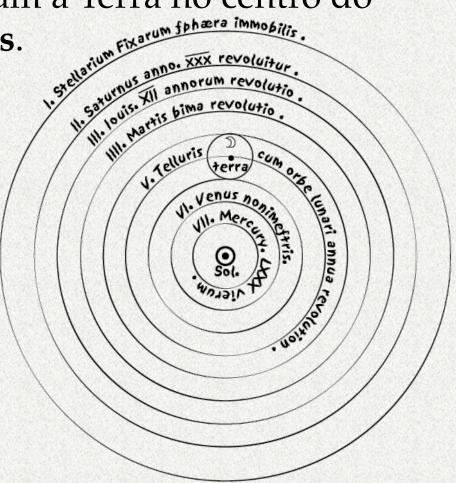

Mitologia Azteca

Visão do Universo no Egito antigo

Universo geométrico grego

- Na Grécia, há cerca de 2500 anos, surge uma visão racional do Universo.
- Método Científico: observação, interpretação, teoria.

Estrelas Fixas

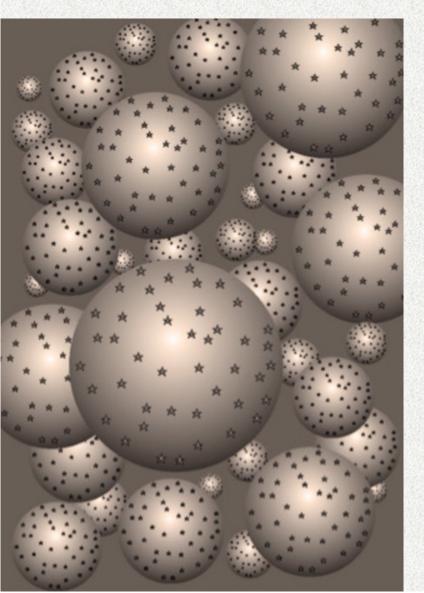

Aristóteles (~320 a.C.); Ptolomeu(~160 d.C.)

Universo geométrico grego

• A maioria dos modelos colocavam a Terra no centro do Universo: **Modelos geocêntricos**.

• Aristarco (~220 a.C.) foi uma exceção: **Modelo heliocêntrico**.

 A ideia da Terra no centro do Universo, defendida por Aristóteles durou quase 2 milênios.


Universo heliocêntrico

• Entre 1530 e 1630, Copérnico, Kepler e Galileu mostram que os planetas, inclusive a Terra, gira em torno do Sol.

rations falma maniste; nomo em consmentiave all è ut maeminduis orbium multitudo (me metiatur) orbi varum segues m hune modu : a simo capucates missim

- No início do século 17, o Universo era basicamente o Sistema Solar:
 - o Sol, a Terra e a Lua;
 - 5 planetas (Mercúrio, Vênus, Marte, Júpiter e Saturno);
 - ✓ (Urano foi descoberto em 1781; Netuno em 1846)
 - As estrelas fixas;
 - As nebulosas, recém descobertas com telescópios, recipios de ser en estado de la completa de l

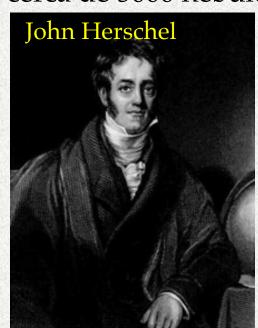
Universo de estrelas e nebulosas



- Com telescópios cada vez maiores e melhores, o Universo parece cada vez mais vasto.
- Em 1750, Thomas Wright sugere que a Via Láctea seja uma casca esférica de estrelas.
- Immanuel Kant escreve sobre o que será chamado mais tarde de "Universos ilhas".

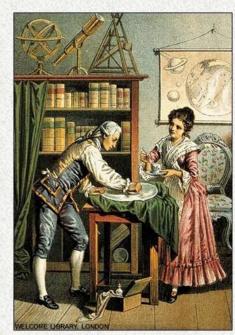
Universo de estrelas e nebulosas

• Entre 1771 e 1781, Charles Messier produziu o primeiro catálogo de nebulosas a aglomerados estelares, com pouco mais de 100 objetos.


Charles Messier

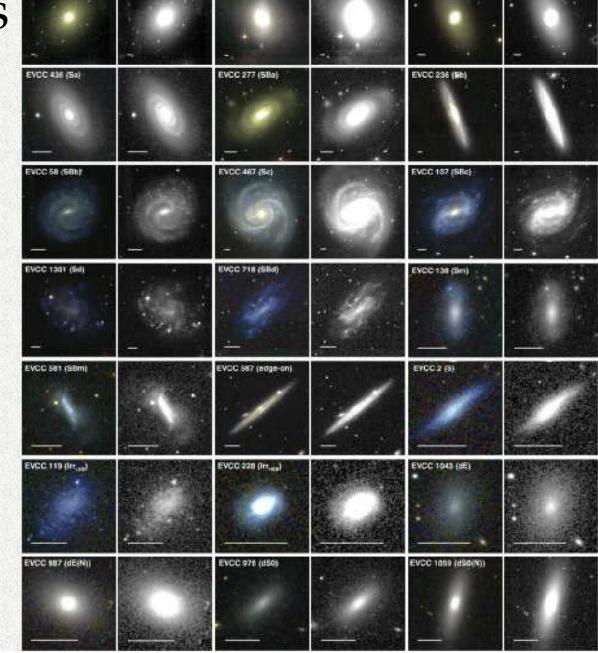
Catálogo de Messier

Universo de estrelas e nebulosas


• Entre 1780 e 1802, William e Caroline Herschel catalogam cerca de 2500 nebulosas.

• John Herschel dá continuidade acrescentando nebulosas observáveis do Hemisfério Sul. Em 1864, o catálogo tinha cerca de 5000 nebulosas.

Fotografia feita em placa de vidro por John Herschel do telescópio de seu pai



William e Caroline Herschel

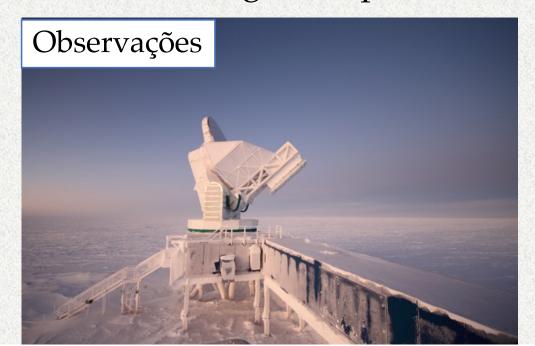
Universo de estrelas e nebulosas

- O que são as nebulosas?
- Qual é sua ligação com a Via Láctea?
- Como é nosso Universo?

Grande debate de 1920

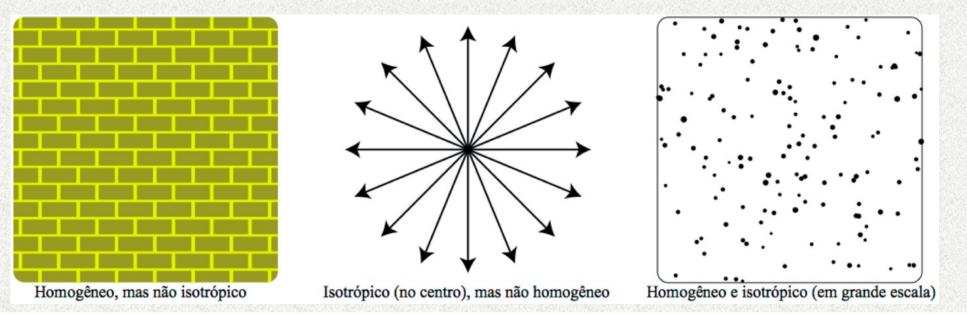
Harlow Shapley	Heber D. Curtis
Via Láctea muito grande	Via Láctea pequena
 Sol distante do centro 	Sol está no centro
 Nebulosas fazem parte da galáxia; a Via Láctea 	 Nebulosas são "universos ilhas"; a Via Láctea é também um
corresponde a todo o universo.	"universo ilha".

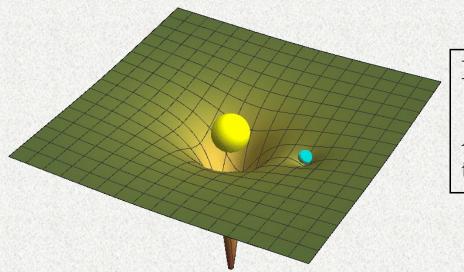
Universo de estrelas X Universo de galáxias


- Dificuldade: medir distâncias.
- Papel da poeira interestelar desconhecido.
- Em 1926, Edwin Hubble mostra que muitas nebulosas estão muito além da Via Láctea.

Cosmologia

• O início do século 20 marca o começo da cosmologia moderna.


• A cosmologia se apoia em duas bases:


Base teórica da cosmologia

- Princípio cosmológico:
 "Universo é homogêneo e isotrópico" (em grande escala).
- Homogêneo: todas as regiões do universo são idênticas;
- **Isotrópico**: mesma aparência para qualquer observador ou mesma aparência em qualquer direção.

Base teórica da cosmologia

- Relatividade Geral (Einstein, 1915) → Gravitação.
- Gravitação é a força relevante para a descrição da evolução do universo.
- Geometria do espaço-tempo ←→ conteúdo de matéria/energia.
 - → Curvatura do Universo.

Matéria e energia deformam o espaço-tempo.

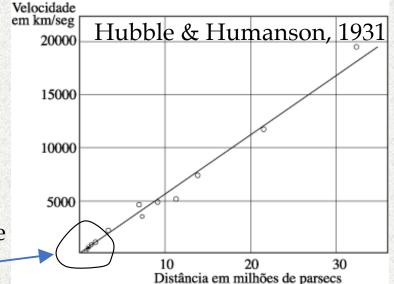
A deformação do espaço-tempo determina a trajetória dos corpos (as geodésicas).

Pilares observacionais da Cosmologia

- Expansão do Universo
 - (Hubble, Lemaître, 1927, 1929)

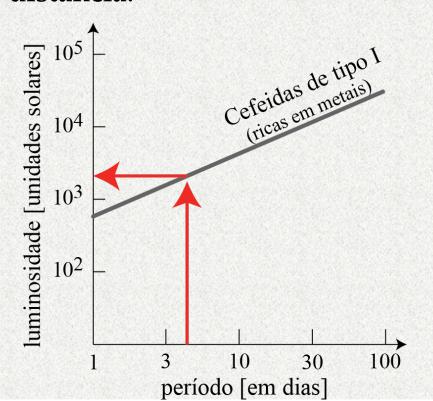
- Abundância de elementos leves (He, D, Li)
 - Gamow; Burbidge, Burbidge, Fowler, Hoyle (1940s,1950s)
- Radiação cósmica de fundo (CMB)
 - Penzias e Wilson (1964)

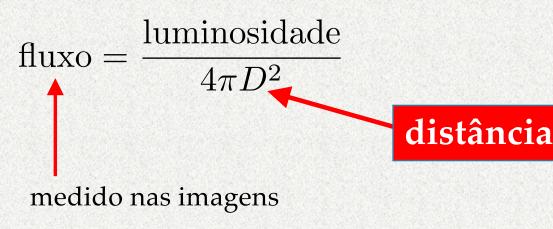
Expansão do Universo


- Seguindo os trabalhos de Henrietta Leavitt e Vesto Slipher, Edwin Hubble mostra em 1929 que o Universo está expandindo.
- Dois anos antes, **George Lemaître** tinha chegado nesta conclusão, mas seu trabalho estava em uma publicação obscura belga.
- Lei de Hubble-Lemaître: quanto **mais distante** está uma galáxia, mais **rapidamente ela se afasta** de nós:

Lei de Hubble-Lemaître: $v = H_0 D$

Edwin Hubble (1899–1953) no Monte Wilson.

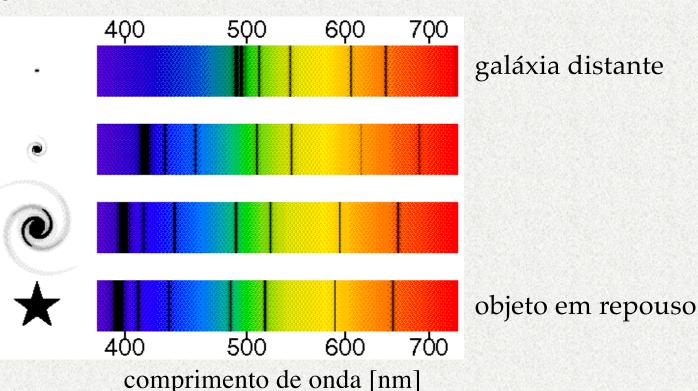

Trabalho original de Hubble em 1929 —


Medindo a velocidade e distância de galáxias

- Em 1912, Henrietta Leavitt descobre a relação **Período-Luminosidade** de estrelas variáveis de tipo Cefeida.
- Com isto, é possível obter a luminosidade da estrela através da medida do período de variação e, consequentemente, a distância:

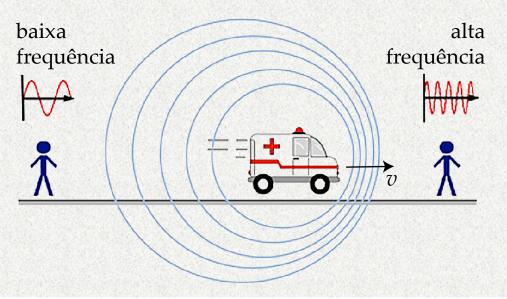
Henrietta Leavitt

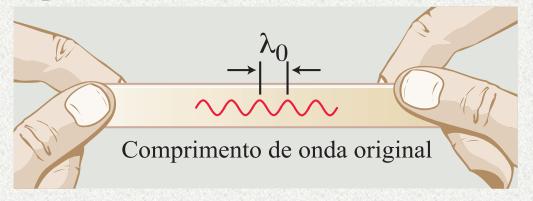
Medindo a velocidade e distância de galáxias

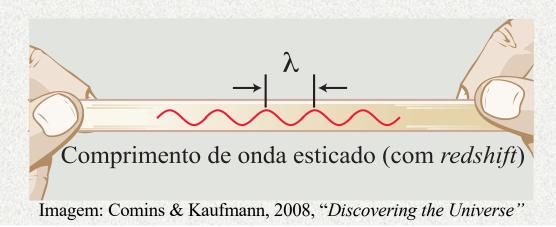

 A expansão do Universo tem um efeito semelhante ao efeito Doppler → objetos se afastando de nós têm sua luz "desviada para o vermelho", o redshift (z).

Medindo o espectro de galáxias, obtemos sua velocidade

em relação a nós:


$$c \ z = v \quad [v \ll c]$$


$$z = \Delta \lambda / \lambda_{rep}$$
redshift



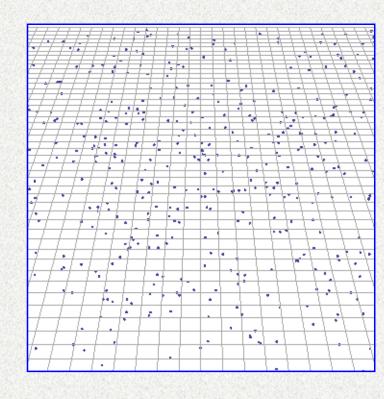
Redshift e a expansão do Universo

- A expansão do Universo afeta a radiação eletromagnética.
- Conforme o Universo expande o comprimento de onda aumenta.
- Analogia com um elástico.
 - → Redshift Cosmológico.
- Efeito semelhante ao efeito Doppler

Expansão do Universo

- Lei de Hubble-Lemaître: $\frac{\text{velocidade} = H_0 \times \text{distância}}{\text{velocidade}}$
- Quanto tempo levou para uma galáxia estar a uma certa distância de nós?
- $Tempo = distância / velocidade = dist / (H_0 x dist) = 1 / H_0$.
 - → Independente da distância da galáxia!

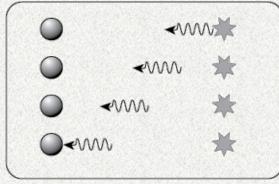
- Extrapolando a expansão para o passado, há cerca de 14 bilhões de anos todo o Universo estava concentrado em um ponto.
 - → Uma singularidade.


Big Bang

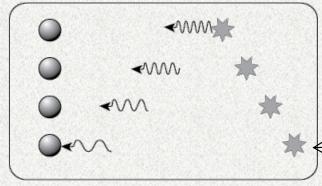
Big Bang, o Universo em expansão

- Existe um tempo no passado no qual todo o universo esteve em um mesmo ponto: o BIG BANG
- O espaço está expandindo e levando as galáxias.
- A expansão NÃO tem centro;
 NÃO foi uma explosão.
- O universo NÃO tem borda:
 - ou você anda para frente para sempre (universo infinito).
 - ou você anda sempre para frente e volta ao ponto de partida (universo finito)

• O universo NÃO expande para lugar nenhum; não existe um "lado de fora" do universo.

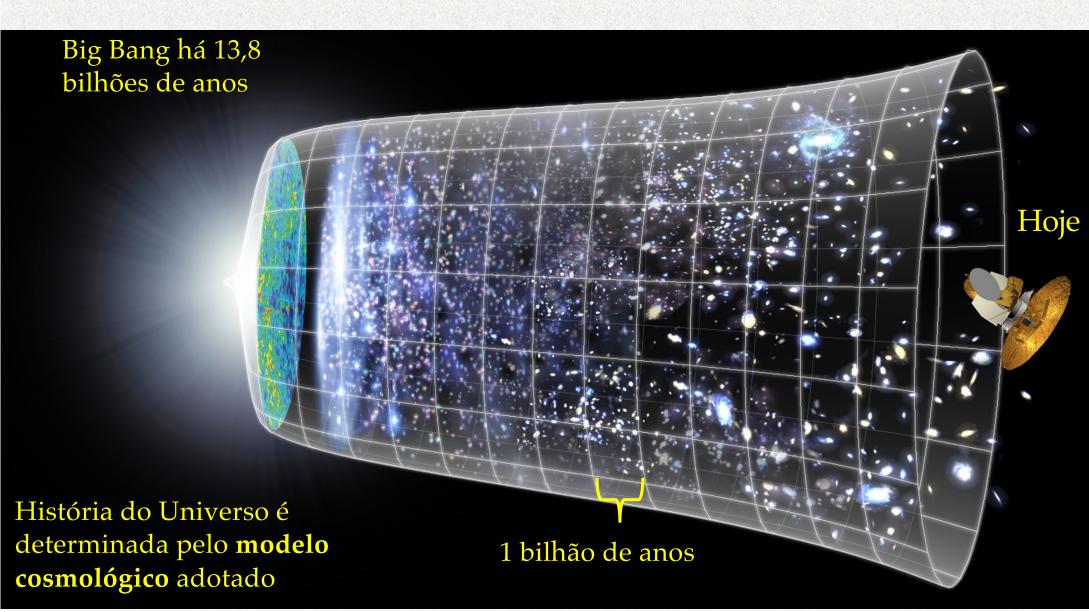


Por que a noite é escura?


- Se o universo é **eterno e infinito**, sempre haverá pelo menos uma estrela em qualquer direção observada.
- **Paradoxo de Olbers** (1826): o brilho do céu noturno deveria ser infinito, contudo a noite é escura.

• *Solução*: o Universo não é eterno, tem uma idade finita: $1/H_0$.

• Só podemos observar os astros de onde a luz teve tempo para chegar até nós.


universo estático

universo em expansão

Além desta fonte não podemos observar: os fótons não tiveram tempo de chegar ao observador.

História do Universo

História do Universo

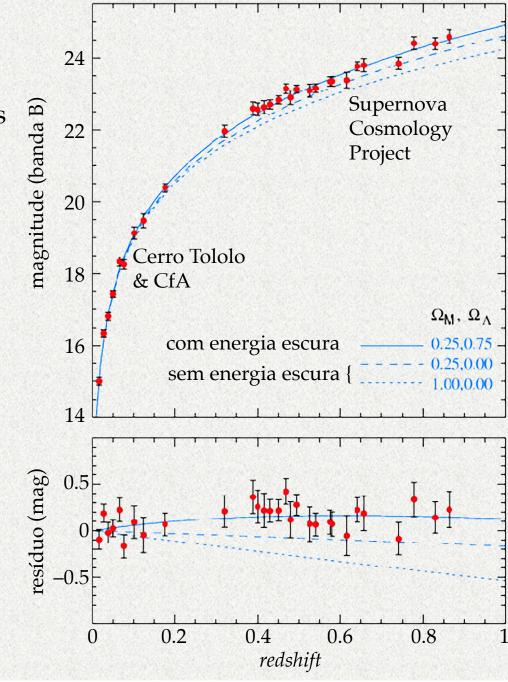
- Os modelos cosmológicos são definidos por constantes determinadas pelas observações: parâmetros cosmológicos.
- Constante de Hubble-Lemaître: H_0 .
 - Taxa de expansão do Universo
- Densidade de matéria do Universo (matéria escura e normal)
- Densidade de radiação (principalmente a radiação cósmica de fundo)
- Densidade de energia escura.

Parâmetros cosmológicos são determinados observacionalmente

Parâmetros Cosmológicos

- Em 1998, medidas com supernovas distantes chegaram à surpreendente conclusão que a principal componente do universo é a energia escura.
- A energia escura tem uma pressão negativa que age de forma oposta à gravitação
 → acelera a expansão do Universo.

Prêmio Nobel física 2011


Saul Perlmutter

Brian Schmidt

Adam Riess

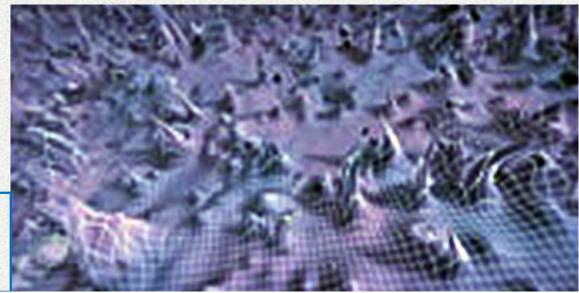
Parâmetros Cosmológico

 A história do Big Bang é determinada pelos chamados parâmetros cosmológicos que descrevem a quantidade de matéria e energia do Universo:

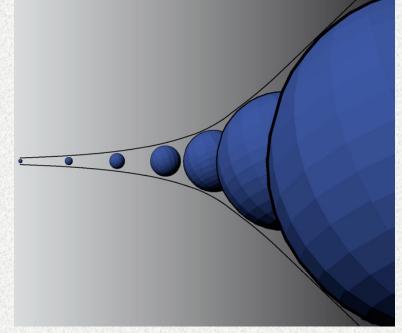
- Radiação: fótons, neutrinos

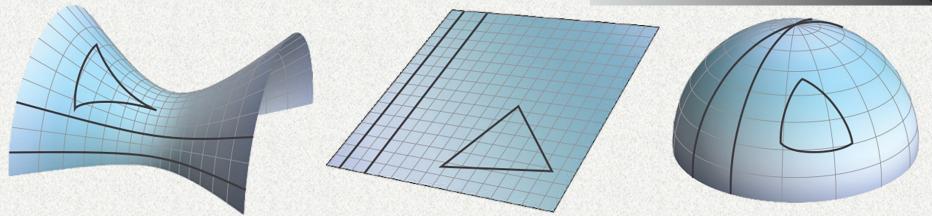
Matéria:

"normal" (prótons e nêutron) escura ou não-bariônica


- Energia escura (seja lá o que for)

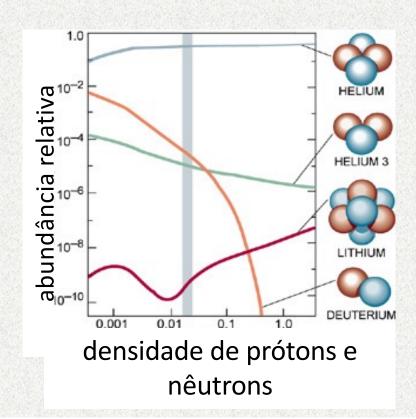
Início da história do Universo


- Big Bang: início da grande expansão.
- O Universo é extremamente quente e denso
- O espaço-tempo é caótico.

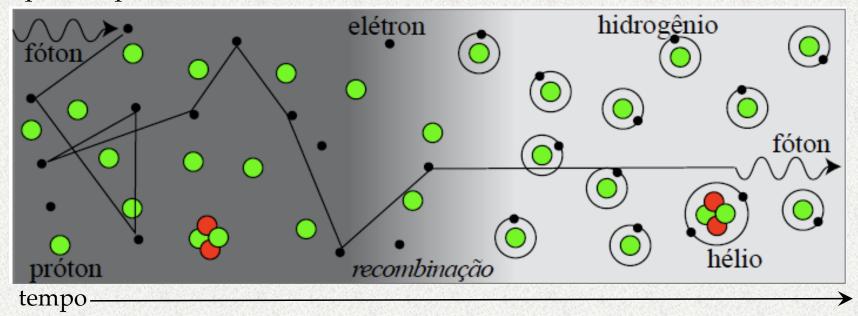

Representação artística de como seria o espaço-tempo do Universo alguns instantes após o Big Bang.

Época da inflação cósmica

- O Universo primordial expande exponencialmente durante 10⁻³² segundos.
- O espaço-tempo deixa de ser caótico e a curvatura do universo se torna plana (ou praticamente plana).



Geometrias possíveis do Universo (representação em 2 dimensões)


Nucleossíntese primordial

- Nos primeiros 5 minutos após o Big Bang são produzidos os elementos leve: **Deutério**, **Hélio** e **Lítio**.
- Cerca de 25% da massa dos átomos está na forma de Hélio.
- Não é possível produzir toda esta quantidade de Hélio através da nucleossíntese estelar.
- A abundância de elementos leves produzidos nos 5 primeiros minutos depende da densidade de prótons e nêutrons no Universo.
- A quantidade observada destes elementos é uma das maiores evidências da teoria do Big Bang.

Formação dos átomos neutros

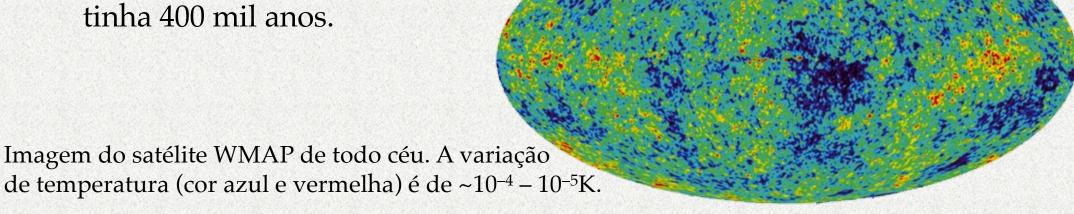
• Durante os primeiros 400 mil anos após o Big Bang, o Universo é tão quente que os átomos estão **ionizados**.

- O Universo era opaco e se torna transparente: Recombinação
- É produzida uma radiação isotrópica chamada
 Radiação Cósmica de Fundo, que observamos hoje em rádio.

Radiação Cósmica de Fundo

- Hoje, a radiação cósmica de fundo tem uma temperatura de 2,725K. Quando foi produzida sua temperatura era de 3000K.
- Foi prevista nos anos 1950.
- Observada em 1964
 - Prêmio Nobel em 1978 para
 Arno A. Penzias e Robert W. Wilson.

~%1 do ruído vem da Radiação Cósmica de Fundo.



Radiação Cósmica de Fundo

- A radiação cósmica de fundo (RCF) é um "retrato" do Universo há 13,7 bilhão de anos atrás.
- A RCF mostra como o Universo é homogêneo e isotrópico em grandes escalas (tem as mesmas propriedades em todas as direções).

 Pequenas variações de temperatura observadas correspondem a variações de densidade de

matéria quando o Universo

Idade das trevas

- Depois da recombinação não há nenhuma fonte de luz durante os próximos 400 milhões de anos.
 - Há apenas a Radiação Cósmica de Fundo se propagando livremente pelo Universo.
- A **Idade das Trevas** termina quando as primeiras fontes luminosas do Universo se formam: as **primeiras estrelas** e os **primeiros quasares**.
- A partir de então, durante os próximos 13 bilhões de anos as galáxias vão se formando e evoluindo.

Formação das grandes estruturas

A matéria tende a se juntar, formando as grandes estruturas do Universo.
Uma rede de filamentos e vazios se desenvolvem.

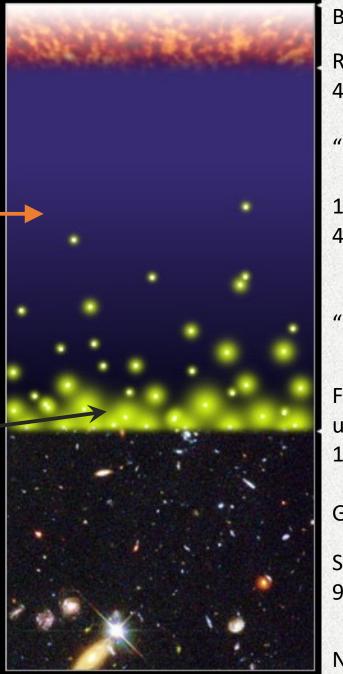
Simulação feita no

Instituto Max Planck

• As galáxias vão se formando nos filamentos de matéria, a chamada "**Teia Cósmica**".

 Radiação cósmica de fundo se forma.

Telescópio espacial James Webb (JWST) está observando até estes objetos


 Quasares e galáxias conhecidos mais distantes.

e esfria

expande

universo

Resumo

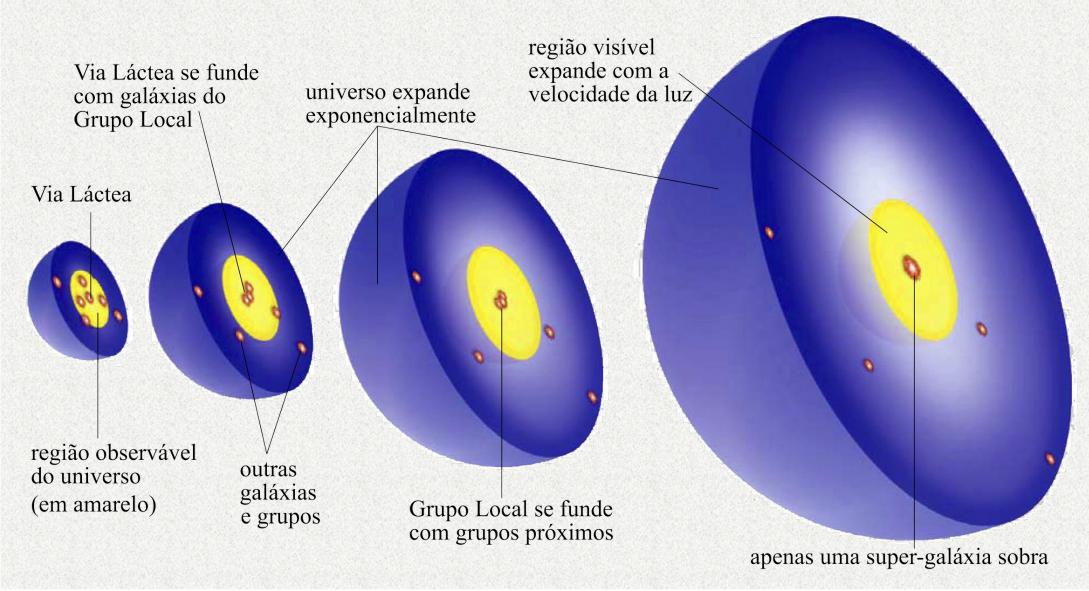
Big Bang

Recombinação 400 mil de anos após o Big Bang

"Idade das trevas"

1^{as} estrelas e Quasares 400 milhões de anos

"Renascimento" cósmico


Fim da idade das trevas universo reionizado 1 bilhão de anos

Galáxias evoluem

Sistema Solar se forma 9 bilhões de anos

Nós, hoje 13,7 bilhões de anos

Futuro do Universo: trilhões de anos

Cosmologia

- A teoria que melhor explica nossas observações do Universo é a teoria do Big Bang, baseada na Física moderna.
- As maiores evidências para a teoria atual do Big Bang são:
 - Expansão do Universo.
 - Abundância do Hélio, Deutério e Lítio.
 - Temperatura e anisotropias da Radiação Cósmica de Fundo.
 - Aceleração da expansão do Universo.
- Contudo, ainda não podemos explicar:
 - O que ocorre no universo durante o Big Bang.
 - A natureza da Matéria Escura e (principalmente) da Energia Escura.

