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Resumo

Nesta dissertação de mestrado estudamos a relação entre as propriedades físicas de grupos ou aglomerados de galáxias e o intervalo
de magnitudes entre a galáxia central e galáxias satélites brilhantes. Para isto, utilizamos dados do levantamento CFHT Stripe-
82, em conjunto com o catálogo de aglomerados redMaPPer, que utiliza dados do levantamento SDSS DR8. Com isto, temos
1502 sistemas e mais de 4 milhões de galáxias. Aplicamos a técnica de lentes gravitacionais fracas para obtermos a massa e a
concentração de perfis radiais através da combinação de muitos sistemas como se fosse um único, na técnica conhecida como
empilhamento (stacking). Os sistemas foram divididos em pilhas de acordo com redshift e riqueza e então, destes grupos,
em intervalos de magnitude ∆M1−2(4) grandes, médios e pequenos. Calculamos uma estimativa para o cisalhamento (shear)
médio em intervalos de raio logaritmicamente espaçados. Fazendo o uso de um modelo parametrizado da distribuição radial de
massa, investigamos os posteriores dos parâmetros através de um método de MCMC. Comparamos os resultados obtidos e não
encontramos evidências significativas de que os sistemas com maiores intervalos de magnitude (fósseis ou quase-fósseis) têm, em
média, concentrações maiores, conforme indicado na literatura.





Abstract

We study the relationship between the physical properties of groups and clusters of galaxies and the magnitude gap between the central
galaxy and bright satellites. In this work we use data from the CFHT Stripe-82 Survey, together with the redMaPPer cluster catalogue, based
on SDSS DR8. We apply cross-correlation weak lensing analysis on stacks defined by placing systems into redshift and richness bins, and
then subdividing these into larger, average and smaller magnitude gap (∆M1−2) ensembles. We calculate estimators for the mean shear in
logarithmically spaced radial bins. Using a parametric model for the mass distribution, we probe the posterior distribution of the parameters
using a MCMC method. We compare the obtained results and do not find evidence that systems with larger magnitude gaps correlate with
larger concentrations, as indicated by literature.
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Part I

eory





1

ntroduion

T      , in both the
massive clusters and in small groups, is becoming increasingly
important in many fields of astrophysics. As some of the greatest
gravitationally bound struures in the universe, they play a
fundamental role both in testing new theories of gravity [Jain
et al., 2013] and cosmology [Weinberg et al., 2013]. As enormous
dynamical struures made mostly of Dark Matter, they can be
used as "natural particle accelerators" in the case of merging
clusters, testing possible dark matter self-interaion properties
[Kahlhoefer et al., 2014]. In galaic astronomy, they provide
insights into the evolution of galaxies [Dressler, 1984] and,
through gravitational lensing, become natural telescopes to
galaxies that would remain unseen with current technology [Zitrin
et al., 2015, Tanvir et al., 2009]. In this context, the present work
investigates properties of a particular subset of groups and clusters,
those in which the central galaxy seems to be an overly dominant
component in the central region of the system. e most extreme
of those systems, usually called "fossils" are oftentimes thought
to represent a relatively undisturbed sample of the struures in
the universe - if that is the case, they could prove to be peculiarly
interesting, as they would carry valuable information about the
overall background evolution and conditions in earlier times in
the universe. To carry out this investigation, we have measured
the masses and radial mass distributions of galaxy systems through
weak gravitational lensing and, together with photometric data,
we have compared the magnitude gap - that is, the difference in
magnitudes between the central galaxy (CG) and the brightest or
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1 To understand the reluance of the author
in calling the theory as "eneral elativity",
please refer to:

V. Fock. eeory of pace, ime and
ravitation. Elsevier Science, 1955/2015.
ISBN 9781483184906

third brightest galaxy in the central region except for the CG -
to the measured quantities and derived observables such as mass
concentration and mass-to-luminosity ratios to search for any
scaling relations.

e role of this work is, however, two-fold: as a masters' thesis,
it must and will summarise the last two years work on the proje
and its results. Additionally, as a guide for future students, we will
try to present the contents in a useful, self-contained as possible
manner without turning it into a full scale review of the subjes
presented, which would diminish the focus of the work.

In the following seions, we establish a stage in which the
evolution of galaxies and galaxy systems take place. e second
chapter will deal with the fundamental aspes of the evolution,
dynamical properties and observables of galaxy clusters. e third
will discuss the main technique used, which is Weak Gravitational
Lensing. In the fourth chapter, we present the data used for our
investigation, and chapters 5 and 6 will contain the respeive
results and discussion. Furthermore, a perspeive outlook is
offered in the final chapter.

1.1 e osmological cenario

A    a hundred years have passed since the
discovery of the cornerstone of modern cosmology, which is
Einstein's eory of Gravity (ETG) 1. It was only in the past
two decades, however, owing to the revolutionary role of modern
instrumentation - both in space and ground telescopes [Weinberg
et al., 2013] -, that Cosmology has bloomed into its current form.

ETG is a metric theory of gravity, that is, one in which the effes
of gravitation are explained as geometric properties of space-time.
e main heuristic argument (but not fundamental property
[Fock, 1955/2015]) of the theory is that a suitable change in
geometry can account for gravitational acceleration: free-falling
astronauts inside a space capsule, for example, cannot distinguish
their movement in a gravitational field or empty space, except for
minute tidal forces. Changes in geometry can be quantified as
changes in the measurement of distances in small ds lengths or,
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2 e metric tensor contains the recipe
for measuring distances along lines, by
ds2 = gµνdxµdxν , where we use the
conventional Einstein notation: any indices
repeated above and below are summed. So

gµνdxµdxν :=
3∑

µ=0

3∑
ν=0

gµνdxµdxν .

3 Rα
µρν is the Riemann Tensor , quantifying

the local deviation of the manifold from an
isometry of the Euclidean space.

4 10 of which will be linearly independent
only, as we require that the metric is
symmetric gµν = gνµ

5 in c = 1 units, which will help us make the
equations more understandable - we can then
return to [c] = km · s−1 with dimensional
analysis in the end.
6 G. F. R. Ellis, R. Maartens, and M. A. H.
MacCallum. elativistic osmology. March
2012

more generally, by observing the change in parallel transport: in
Euclidean space, transporting continuously a veor along a closed
trajeory maintaining its orientation locally will bring the veor
back to itself, with no change. e same is not true if the space is
curved. Tests of ETG, from its effes on time and the bending of
light, to parallel transport of angular momentum [Everitt et al.,
2011, Will, 2014] have been tested extensively resulting in a
resounding success.

By requiring that the theory is a field theory solely on the metric
tensor2 gµν , with second order partial differential equations of
motion, it can be shown that we are lead almost uniquely to

Rµν −
1

2
gµνR =

8πG

c4
Tµν − Λgµν , (1.1)

where Rµν = Rρ
µρν

3 and R = Rµ
µ are the Ricci Tensor and scalar,

respeively, measuring the deviation of the volume of a geodesic
ball in the curved manifold. Tµν is the stress-energy(-momentum)
tensor, that is, the colleion of 4-momentum fluxes pµ passing
through a surface of constant xν , with µ, ν = 0, 1, 2, 3 being the
usual time and space dimensions. ese 16 equations 4 are then
non-linear, since the field equations propagate through the very
same space-time metric it governs.

In addition to the field equations, we must specify the
matter/energy content of the universe. To be useful, a
cosmological model should be easy to describe - that means it
should have symmetries or special properties that reduce the
complexity of the equations [Ellis and van Elst, 1999]. One such
usual choice for matter description is that of a mixture of fluids
with physically motivated equations of states. Let us then consider
a congruence of fluid particles world lines, having timelike 4-
velocities5 uαuα = −1, under the effe of their own gravity. e
time derivative of any tensor is given by Ȧ = A;νu

ν . e motion
of fluid particles can then be divided into distin effes as 6:

• expansion/contraions of volume, which are given by
divergences of uα, as θ := uα;α,

• distortions in shape without change of volume which are trace
free and orthogonal to uα which is defined by the symmetric
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tensor,

σµν := u(µ;ν) −
1

3
θhµν − u̇(µuν) ,

where u(µ;ν) = (uµ;ν + uν;µ)/2 and hµν = gµν − uµuν .

• rotation and vorticity, without change in shape which are anti-
symmetric and given by ωµν := u[µ;ν] − u̇[µuν] with u[µ;ν] =
(uµ;ν − uν;µ)/2, and

• acceleration due to non-gravitational forces, like pressure
gradients, given by the time derivative of the 4-velocity u̇µ =
uµ;νu

ν .

e covariant derivative of the 4-velocity can now be written as

uµ;ν = σµν + ωµν +
1

3
hµν + u̇µuν . (1.2)

e Riemann curvature tensor can be defined as:

uα;νβuµ − uα;βνuµ =: Rα
µβν . (1.3)

Now, contraing the expression above with α = β and
multiplying by uµuν we have the scalar equation

θ;νu
ν − uα;ναu

ν = Rµνu
µuν ,

which gives us the icci identity:

θ̇ − u̇α;α + 2(σ2 − ω2) +
1

3
θ2 = Rµνu

µuν , (1.4)

where σ and ω are the traces of their respeive tensors. Now,
the stress-energy tensor of a perfe fluid in thermodynamic
equilibrium is given by:

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν , (1.5)

where ρ is the matter energy density in the fluid and p is the
isotropic pressure, and the field equations can be rewritten as
[Hawking and Ellis, 1973]

Rµν = κ

(
Tµν −

1

2
Tgµν

)
− Λgµν ,
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where again T is the trace T α
α and κ = 8πG/c4. Now,

contraing this with uµuν , using the perfe fluid stress-energy,
one finds

Rµνu
µuν =

c4κ

2

(
ρ+ 3

p

c2

)
− Λ ,

which, using equation 1.4 we can write:

θ̇ − u̇α;α + 2(σ2 − ω2) +
1

3
θ2 =

c4κ

2

(
ρ+ 3

p

c2

)
− Λ , (1.6)

which is the aychaudhuri's quation, which is essentially the
relativistic law of gravitational dynamics [Ellis, 2007]. In order
to proceed with our model, we consider the osmological rinciple
which states that our outlook of and place in the cosmos should
probably be a common one. More formally, that means that
the properties of the universe in a sufficiently large scale should
look the same for any observer at any particular point, and that
we expe that fundamental observers, i.e., imagined observers
which follow the local mean motion of matter, will experience
an equivalent history of the Universe. In this case, the distortion
in shape and the vorticity are zero. Now, if we at first consider
only gravitational interaions, uµ;µ = 0, these assumptions will
lead us to the Friedmann-Lemaitre model, with a Robertson-
Walker metric (FLRW) as we see next. In order to implement
the model, we can write the expansion as a funion of the linear
scale expansion by:

θ =
˙(d3l)

d3l
= 3

ȧ

a
,

where a is a normalised linear scale faor l/l0 such that the
volume V scale as V ∼ l3. en, using 1.6 we arrive at:

3
ä

a
= −c

4κ

2

(
ρ+ 3

p

c2

)
+ Λ . (1.7)

e physical meaning of this acceleration equation is
straightforward: a change of rate of the expansion or contraion
of a small ball of radius l, relative to its size, is proportional to
minus the energy density plus (3 times ) the pressure, plus a
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7 Euclidean space is flat, simply conneed
and infinite. A 3-torus is also (locally) flat,
but multiply conneed, finite and compa.

constant. Since the scale a is defined as positive, if the constant
Λ is zero, the rate of expansion must be decreasing (or the rate
of contraion, increasing). Without the constant Λ, this is a
quantitative statement which states that gravity is attraive.

Now, it is clear that a static universe (ȧ = ä = 0) must have
Λ > 0, and therefore be unstable, because if we introduce a
perturbation l → l + δl to a larger value, the matter density ρ
increases, while Λ stays constant. en ä > 0 and the universe
expands to infinity. Similarly, l − δl will imply in ä < 0
and the universe will collapse. So, the universe should be either
expanding or contraing, but not static. From the first half of the
twentieth century and on, however, evidence that the universe
was expanding began accumulating [Slipher, 1917, Hubble, 1929,
Sandage, 1958].

Turning back to our argument, if we use the conservation
equation for fluids considering the expansion term, we have:

ρ̇+
(
ρ+

p

c2

)
θ = 0

ρ̇a2 + 3ρȧa︸︷︷︸
2ρȧa+ρȧa

+3
p

c2
ȧa = 0

˙(ρa2) = −aȧ
(
ρ+ 3

p

c2

)
. (1.8)

en, multiplying equation 1.7 by ȧa, and substituting with
1.8 we finally arrive at

3ȧ2 − c4κρa2 − Λa2 = const. . (1.9)

is is the riedmann equation, which governs the time
evolution of FLRW universes. e constant term in the right
hand side is a measure of the local curvature of space - that is, a 3-
dimensional equal-time slice of the 4-dimensional manifold. Due
to our assumption of homogeneity the curvature of space must be
the same everywhere. erefore, aspes of the global geometry of
space-time can be constrained by its value. A positive curvature
("spherical") everywhere will lead to a closed universe, whereas
for zero ("flat") or a negative ("hyperbolic") spatial curvature, the
topology can be either compa or infinite [Lachieze-Rey and
Luminet, 1995].7
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e Friedmann equation can be written in the most usual form
as (

ȧ

a

)2

= −8πG

3
(ρ) +

Λc2

3
− Kc2

a2
, (1.10)

where K (not to be confused with κ) is the constant of 1.9.
For any time-slice of the universe, K/a2 will give the spatial
curvature.

If we choose a coordinate system in which any observer that
sees an isotropic universe has constant space coordinate values,
we can see that the left-hand side of the equation is the rate of
expansion at a time t per unit distance. Since the distance from
an observer to an obje is r = a(t)x, the rate of change in
the distance is ṙ = ȧx + aẋ = (ȧ/a)r + aẋ. Here, ẋ can
be understood as a peculiar velocity of the obje relative to the
local isotropic frame and (ȧ/a)r is the rate of recession of the
isotropic observer frame and the isotropic obje frame. In fa,
the quantity H(t) = (ȧ/a) can be direly measured if we assume
that deviations from local mean motion should be randomly
distributed, and measure the rate of recession of distant objes.

1.2 e tandard osmologicalodel
e above derivation gave us an equation to evaluate the dynamics
of the background evolution of the universe. To employ it, we
must now consider the contents making up the stress-energy
tensor, which will be defined as fluids with some physically
motivated equation of state (p = ρw), and relate to present
values. e scale faor a can be normalised to one at the present
time, and for further convenience, we will define the present value
of the Hubble faor H(t) as H(t0) := H0, which is usually
represented as 100hkm · s−1 ·Mpc−1 where h, or sometimes h100 is
called the reduced Hubble constant. It is many times convenient
to calculate quantities in Hubble constant independent units to
compare results between different works.

For each type of content, the density can be written as a
funion of cosmological time as [Weinberg, 2008]

ρ ∝ a−3(1+w) . (1.11)
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8 Usually, the mass and radiation densities
can be further divided into physical
components:

ρm = ρc + ρb

ρr = ργ + ρν ,

where ρc is the density of Cold Dark
Matter, ρb is the density of baryons, ργ is
the density of photons, and ρν is the density
of neutrinos.

For matter, dark or not, w ≈ 0 and the density at a particular
slice of time can be written as ρm(t) = ρm,0/a

3 respeive to the
current ρ0 density. For radiation, we have w = 1/3 and then,
ρr = ργ,0/a

4 since not only the eleromagnetic field density
decreases but also the wavelengths (and hence photon energies)
are changed due to gravitational effes [Weinberg, 2008]. Finally,
we can, for Λ, define a density ρΛ := Λc2/a0 which is constant.

e Friedmann equation is now, then:

H2(t) =
8πGρ(t)

3
− Kc2

a2
, (1.12)

with8

ρ(t) = ρr(t) + ρm(t) + ρΛ(t) .

If space curvature K = 0 we have the critical density of the
universe at time t given by:

ρcrit =
3H2(t)

8πG
. (1.13)

It is useful to redefine the densities of contents as a fraion of
the critical density, so that we can describe the contents of the
universe in density fraions, as the behaviour of the solution will
depend on these. For any fraion χ we can define

Ωχ(t) :=
ρχ(t)

ρcrit(t)
. (1.14)

Even then, if we define a present time "curvature density" as

ΩK := −Kc
2

H2
:= 1− ΩM − Ωγ − ΩΛ , (1.15)

we can rewrite the Friedmann equation as a funion of current
densities as:

H2(t) = H2
0

(
ΩΛ +

Ωk

a2
+

Ωm

a3
+

Ωr

a4

)
. (1.16)

Since H2 = ȧ/a, this is a first-order non-linear equation
on a(t), which can be solved algebraically for simple cases and
numerically in general.

Until now, we have not discussed the nature of the Λ faor in
the EFEs. ere was no reason, at first, that the equations should
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9 Covariant conservation, that is

(Tµν);µ = 0(
Rµν −

1

2
Rgµν + Λgµν

)
;µ

= 0

does not amount to energy or energy-
momentum conservation. Since energy is
defined as a scalar quantity that is conserved
as a result of the time-translational invariance
of the laws of physics, conservation of
energy must be defined along timelike veor
fields. Killing veor fields are those who
satisfy the equation ξµ;ν + ξν;µ = 0,
and are the generator of symmetries of
the metric. While there are metrics which
have such timelike/null Killing fields, the
Robertson-Walker metric that arises from the
cosmological principle does not: .

S. W. Hawking and G. F. R. Ellis. e
arge-scale truure of pace-time. 1973;
and C. W. Misner, K. S. orne, and J. A.
Wheeler. ravitation. 1973

contain the constant Λ, but it also does not spoil "covariant
conservation". 9 Λ can be understood either as a dynamical
property of empty space-time, as a part of the Einstein tensor
(the left hand side of 1.1) or a universal vacuum density, as a
part of the right-hand side. In this latter case, we can see that it
as as a constant density uniform fluid with negative pressure
since ρΛ ∝ a0 implies that pΛ = −ρΛ/3. Also, through the
Raychaudhuri equation (specially, in its "Friedmann equation"
form), it is clear that Λ violates the strong energy condition if the
universe is expanding acceleratingly, since κ′/2(ρ+ 3p/c2)− Λ <
0. e same is thought to happen in the earliest times, during
inflation, where the universe undergoes exponential expansion.

Recent experiments have been measuring the partial fraions
of Dark Energy (DE), Dark Matter (DM), Baryonic Matter with
increasing precision, arriving in a piure that is most consistent
with a universe ruled by ETG with zero curvature and dominated
by DE and DM [Smoot, 1999, Hinshaw et al., 2013, Planck
Collaboration et al., 2015]. ese elements combine to form
the tandardodel of osmology, known as ΛCDM, a universe
dominated by Dark Energy(Λ) and Cold (that is, non-relativistic)
Dark Matter (CDM), which has been extremely successful in
explaining the struure and evolution of the cosmos. Baryonic
matter, the only fraion which currently has a micro-physical
description, contributes only with ∼ 4% of the total energy
density. Some of the state-of-the-art measurements of the relevant
parameters are in table 1.1

Parameter WMAP9 Planck 2015 Parameter Concordance
Ωbh

2 0.02264(50) 0.02230(14) Ωm 0.3

Ωch
2 0.1138(45) 0.1188(10)

ΩΛ 0.721(25) 0.6911(62) ΩΛ 0.7

ΩK −0.37
+(44)
−(42) −0.052

+(49)
−(55) ΩK 0

H0 70.0(2.2) 67.26(98) H0 70

Table 1.1: Measurements for
ΛCDM cosmology by current CMB
experiments.[Hinshaw et al., 2013, Planck
Collaboration et al., 2015] Other model
parameters suppressed for clarity

1.3 easuring ery arge istances
It has been shown by [Ehlers et al., 1968] and generalised to
approximations by [Stoeger et al., 1995] that if all free falling
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10 is is a dire consequence of the
Noether's theorem.[Noether, 1918]

observers observe nearly isotropic background radiation, then the
metric describing the background evolution of the largest scales is
the Robertson-Walker metric:

ds2 = −c2dt2 + a2(t)dl2 , (1.17)

where dl is the line element of space, which can be written in
comoving spherical coordinates as

dl2 =
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2 . (1.18)

For photons, we can write without loss of generality a radial null
geodesic as

ds2 = 0 = −c2dt2 − a2(t)
dr2

1− kr
. (1.19)

Now, since the value of Kr2 can be absorbed into r2 with a
change of coordinates, only 3 special values of K have physical
significance, namely {0, 1,−1}, representing flat, spherical
and hyperbolic geometries respeively. ese cases will lead to
different mathematical analyses as we see in what follows.

Now, as r is a comoving coordinate, the total distance dc
is constant. e total length travelled by the photon can be
calculated then as

∫ t0

te

cdt
a(t)

=

∫ dc

0

dr√
1− kr2

=


arcsindc if(k = 1),

dc if(k = 0),

arcsinhdc if(k = −1) .
(1.20)

where te is the time of emission and t0 is the current age of the
universe, in which a(t0) = 1. Since e physical distance between
comoving observers is d = a(t)dc, the current distance is equal
to the comoving distance - it will be less than that in the past, and
greater in the future.

Since the FLRW universe space is not time translation invariant,
the photon will not conserve its energy along the path.10 e
wavelength of the photon will be direly proportional to the
scale faor: λ0/λe = a(t0)/a(te) which is usually expressed as
the redshift z = 1/a(te) − 1, which is the measured change in
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frequency divided by the original frequency and can be direly
observed from discrete line spera.

In terms of redshift, the Friedmann equation can be written, by
dire substitution of a→ 1 + z as:

H(z) = H0

√
ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4

(1.21)
= H0E(z)

For a photon emitted at a time te and observed at a time ta
the comoving distance between objes at redshifts z1, z2 can be
written, since H(z)dt = adz, as:

arcsin dc , or
dc , or
arcsinh dc

 = c

∫ ta

te

dt
a(t)

= c

∫ z2

z1

dz
H(z)

=
c

H0

∫ z2

z1

dz
E(z)

, (1.22)

where dH = c
H0

is called the ubble horizon, or the radius of the
Hubble sphere. In terms of Ωk, H0 and c, we can write then:

dc(z1, z2) =
c

H0



1√
Ωk

sin
[√

Ωkdc,0(z1, z2)
]

, or

dc,0(z1, z2) , or
1√
|Ωk|

sinh
[√

|Ωk|dc,0(z1, z2)
] .

(1.23)
Neither physical nor comoving distances can be direly
measured, however. To do so, we must rely on standard rulers or
standard candles, by using relations that employ either angular
distances or the reduion in luminosity of distant objes. In
Euclidean space, the relations are dA = r/θ, for an obje of
known size r with an angular diameter θ and dL = 10

m−M
5 +1,

for an obje of absolute magnitude M and apparent magnitude
m with dA = dL = dc. However, as a result of the curvature of



36         

space-time, these equalities do not hold in FLRW universes. e
angular distance between two different redshifts will be stretched
by the relative expansion between them:

dA(z1, z2) = dc(z1, z2)
a2
a1

= dc(z1, z2)
1 + z1
1 + z2

, (1.24)

whereas luminosity distance, due to flux conservation, will be
related to the angular distance and the comoving distance by
[Ellis, 1971]:

dL(0, z) = (1 + z)2dA(0, z) = (1 + z)dc , (1.25)

which is the therington's reciprocity relation and is valid for any
pseudo-riemannian description of space-time, regardless of the
theory of gravity. ese measures of distances in cosmology will
be necessary to not only determine the distance of clusters and
background objes for gravitational lensing latter in this work,
but also to calculate absolute magnitudes. Using the luminosity
distance, the difference between absolute and apparent magnitude
can be written as

DM = 5 log
[
dL(z)10

5Mpc−1
]

(1.26)

1.4 e ig ang
e expansion of space, when backwards extrapolated to very
early times will lead us to the idea that the universe was once
very hot and dense [Dodelson and Efstathiou, 2004]. In fa,
one can show that for small enough ρΛ , the geodesics of our fluid
congruence will be incomplete in the time coordinate, in other
words, they cannot be extended beyond a certain proper-time
or affine parameter. is is what is called a time-like singularity
in the past, in which the curvature diverges for all points of
space[Hawking and Penrose, 1970].

Either with or without singularities, it is now known that the
early universe was dense and hot. e main observations that
support this are:

• the Cosmic Microwave Background (CMB) [Smoot, 1999,
Hinshaw et al., 2013, Planck Collaboration et al., 2015], which
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11 Several processes and most of the
underlying physical theory at this point are
still poorly understood, but are extensively
discussed in literature [Baumann, 2009,
Sakharov, 1991].

is the relic thermal emission of matter,

• the abundance of primordial elements [Steigman, 2007] created
during the first minutes, and

• the observation of the near isotropic recession of distant objes
from small to very large redshifts (Hubble's Law) e.g. [Riess
et al., 1998].

Figure 1.1: e all sky measurements of
temperature deviations from the average of
the Cosmic Microwave Background [Planck
Collaboration et al., 2015].

e earliest phases of the Big Bang are still subje to much
speculation. Although the oldest relic from the beginning direly
deteed is the CMB at redshift z = 1108, t ≈ 380000 years,
confidence in ETG allows us to formulate models of evolution of
of much earlier times.

In most currently discussed models, the universe begins
as homogeneous quantum vacuum. At some point, a phase
transition caused the universe to enter an exponentially
accelerated expansion. Vacuum fluuations then, under the
rapid change of the underlying potential, became real particles
and density fluuations slightly deviating from the background
homogeneity.11

As temperature, density and pressure decreased, the
Eleromagnetic and Weak interaions decoupled, and baryon
physics arose as currently understood in collider experiments.
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12 these two events are distin, and in
a universe with different values for the
baryon-to-photon ratio and matter density,
recombination and photon decoupling
need not have occurred at the same
epoch.[Padmanabhan, 1993]

Further on, at t = 10−4s, quarks condensed into hadrons.
Neutrinos decoupled at about 1s and between the first and third
minutes from the start, primordial nucleosynthesis created the
primordial elements [Alpher et al., 1948]

From the end of the inflation to 104 years, the dynamics of the
expansion are dominated by radiation content, because the a−4

term in the equation explodes. is is the radiation era and using
the Friedmann equation 1.9 with all other densities being zero, we
find that a ∝

√
t. After equipartition (Ωm(teq) = Ωr(teq)),

matter density became the dominant faor and expansion
accelerated to a ∝ t2/3. e mean free path of the photon
was small, as they constantly scattered off the free elerons and
protons of the hydrogen/helium plasma.

Eventually, the universe cooled to the point that the plasma
condensed into neutral atoms, an epoch called recombination.
Shortly after recombination, the photon mean free path became
larger than the Hubble length, and photons travelled freely
without interaing with matter. For this reason, recombination
is closely associated with the last scattering surface, which is
the name for the last time at which the photons in the cosmic
microwave background interaed with matter.12

1.5 volution of the arge cale truure of the
niverse

Small deviations from homogeneity can be studied by assuming
a FLRW background and introducing local perturbations to the
density field. As in the earliest times, ΩΛ is negligible, we consider
Λ = 0 for now. Deviations of a global average density can be
written as

1 + δ(x⃗) =
ρ(x⃗)

ρ̄
, (1.27)

where δ is called the density contrast with respe to the
background average density ρ̄. For now, we will consider linear
perturbation, in which δ ≪ 1. Let us start with a simple case.
A region with an overdensity δ(x⃗) of radius r < dH , in an
otherwise flat ΛCDM background, has a deviation in expansion
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of θ = 3H → 3H + δθ. During matter domination and using
energy conservation 1.8 and the Raychaudhuri equation 1.6 for
dark matter only, as in the acceleration equation 1.7, leads to the
background equations at zeroth order and at first order to:

δ̇ + δθ = 0 ,

δθ̇ + 2Hδθ = −4πGρ̄δ .

Eliminating δθ we have then:

δ̈ + 2Hδ̇ − 4πGρ̄mδ = 0 , (1.28)

which is an equation that governs the evolution of local matter
overdensities δ with background density ρ̄.

e introduion of perturbations direly to the equations of
motion as such is not aually compatible with ETG, but only
with the Newtonian limit [Ellis et al., 2012]. at this Newtonian
approximation works can be deceptively simple because its validity
depends on certain gauge issues (or, more precisely, on our ability
to write gauge-invariant gravitational potentials [Bardeen, 1980]
in ETG, which are presented in clear form by Peacock [2003] in
its seion 1.2. Rigorous approaches can be read on Ellis et al.
[2012] or Dodelson and Efstathiou [2004]

To work out some simple results, let us examine equation 1.28
by introducing the definition of Ωm so that we have

δ̈ + 2Hδ̇ − 3

2
ΩmH

2δ = 0 . (1.29)

Using the scale faor for a matter-dominated universe, this
equation can be solved to δ(t) = δ+t

2/3 + δ−t
−1 where δ+t2/3

is called the growing mode, since the density contrast with it
grows with time (and eventually, collapses into visible struures).
e evolution of the density perturbations can be written by a
separation of variables as

δ(x⃗, t) = D+(t)δ(x⃗, 0) (1.30)

where D+ is called the rowth union and is given, in
the matter dominated era, as a funion of the scale faor a
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by[Dodelson and Efstathiou, 2004]

D+(a) ∝ H(a)

∫ a

0

da′

(a′H(a′))3
(1.31)

and can be used normalised to D+(1) = 1 for praical
purposes. To account for radiation, which is not dominant
after equipartition but still relevant before recombination, the
argument can be completed with a change of variables from t
to y = a/aeq, which together with the Friedmann equation
gives us the észaros equation [Meszaros, 1974, Dodelson and
Efstathiou, 2004]:

δ′′ +
2 + 3y

2y(1 + y)
δ′ − 3

2y(1 + y)
δ = 0 . (1.32)

is equation has two closed analytic solutions, the growing
mode of which is δ(y) = y + 2/3. Another mode is dominant
if y ≪ 1, which is δ ∝ ln y. In this case, which we can extend
to full radiation dominated era, and the latency in response of the
density contrast due to the rapid expansion is called the észaros
effe[Peacock, 2003] - a large overdensity (with size greater than
dH) that had been growing, enters the Hubble horizon and
becomes nearly frozen (growing only logarithmically) before
matter domination arrives.

Table 1.2: Sub-horizon sized matter
overdensities evolution with time in different
epochs.

Era Ω H(t) δ(t)

Radiation Ωm,ΩΛ ≈ 0 1
2t

C1 ln t
Matter Ωr,ΩΛ ≈ 0 2

3t
C+t

2/3 + C−t
−1

Λ Ωm,Ωr ≈ 0
√

Λ
3

C1 + C2e
−2
√

Λ
3
t

For modes larger than the horizon dH , Newtonian
approximation breaks down, and we have to return to the full field
equations. ere are many ways to define covariant potentials,
analogues to the Newtonian potential Φ. Following the path of
Dodelson and Efstathiou [2004] we can write:

3H
(
Φ̇ +HΦ

)
= 4πGa2ρmδ

[
1 +

4

3y

]
. (1.33)

is equation can be solved in the potentials and yields constant
solutions for either matter domination or radiation domination,
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the latter being up to 10 times greater than the first [Dodelson
and Efstathiou, 2004]. In both cases, using known relations for H
and ρ we arrive at δ ∝ a2 for a ≪ aeq and δ ∝ a for aeq ≪ a. In
essence, this shows that large modes will always grow.

Finally, to consider the effe of baryons - which are only
relevant in sub-horizon evolution, since collisional effes are
local, equation 1.28 must be changed to include pressure. is
will result in

δ̈ + 2Hδ̇ + (c2s∇2 − 4πGρ̄m)δ = 0 . (1.34)

where cs =
√
∂p/∂ρ is the sound speed of the baryon fluid.

is equation can be understood classically as δ̈ − [Pressure −
Gravity]δ = 0, which is Newton's 2nd Law. e solutions
for equation 1.34 will depend on a particular scale, since the
gravitational forces of small overdensities cannot overcome the
pressure of the baryons. is is the eans ength and is expressed
as:

λj = cs

√
π

Gρ
(1.35)

For a λ > λj the struure will collapse, otherwise it oscillates
due to pressure.

1.6 e ole of alaxies in osmology
At the end of the first stages of cosmic evolution, the
inhomogeneities contain the information that will shape the
observed large scale struure of the universe. is struure is
mostly isotropic and homogeneous in the largest scales, but its
configuration displays measurable statistical properties that can be
observed in the CMB, galaxy positions and clustering. It is clear
then that assessing this statistical information offers knowledge
about not only the objes themselves but about the universe and
the physical laws on the whole [Weinberg et al., 2013].

e universe we see at night, on the other hand, displays a rich
struure (Fig: 1.2), with field galaxies, groups, clusters and super-
clusters of galaxies, filaments and large empty voids. To compare
these observational results with the theory we use statistical
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Figure 1.2: Distribution of galaxies of the
2dF Galaxy Survey [Colless et al., 2001].

13 Simulations are, in essence, methods for
solving the differential equations to calculate
the theoretical prediions.

methods over populations of features in observations, such as
preferred scales in the CMB map, or number counts per interval
of cluster mass, among others [Weinberg et al., 2013, Lima and
Hu, 2005]. To make sense from the theory to observations,
simulations, even though based in Newtonian physics and
approximations for finite volumes, have been very successful to
reproduce these statistical features of the large scales[Springel
et al., 2005, Vogelsberger et al., 2014, Klypin et al., 2011].13

Usually, one starts with the full-version perturbed EFEs together
with the Boltzmann equation for the evolution of the fluids up to
a certain redshift. Setting the initial conditions is problematic,
since current models based on ETG will definitely fail when
energy density reaches Planck-scale levels(about t = 10−43).In
these so called instein-oltzmann solver codes, such as CAMB
[Lewis and Challinor, 2002] one sets initial conditions after
Inflation, using well-grounded assumptions.

e statistics of the density field is encoded by n-point
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Figure 1.3: A comparison between the
Bolshoi simulation and SDSS observation
of the nearby universe. ources: ina
curdy/niversity of alifornia,
anta ruz; alf aehler and isa
echsler/tanford niversity; loan igital
ky urvey;ichael usha/niversity of
urich

14 It is also usual to define also the
dimensionless quantity

∆2
k :=

k3P (k)

2π2
(1.38)

which measures power per logarithmic
scale.

correlation funions.

ξ(r) = ⟨δ(x⃗)δ(x⃗+ r⃗)⟩ (1.36)

where ξ(r) depends only on the distance between two points
due to the statistical homogeneity and isotropy.

e density contrast can be written as an inverse Fourier
transform

δ(x) =

∫
d3k
(2π)3

δ̃(k)eik⃗·x⃗ (1.37)

So defining the power sperum14as

⟨δ̃(k⃗)δ̃∗(k⃗′)⟩ := (2π)3δ3D(k⃗ − k⃗′)P (k) (1.39)

where δ3D is the irac distribution, we can write the two-
point correlation funion as the Fourier transform of the power
sperum

ξ(r) =

∫
d3k
(2π)3

P (k)eik⃗·r⃗

=
1

2π2

∫
dkk2P (kr)

sin(kr)
kr

(1.40)

e most appealing reason to write the quantities in terms
of Fourier space variables is that due to translational invariance
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15 which is charaerised by ∆k > 1

(which follows from homogeneity) we charaerise the statistics of
random fields as preferred scales, which readily show up in power
spera.

Up to now, we have seen how the universe evolves and how this
stage is set for galaxies and galaxy clusters to a. It is then time to
move to non-linear scales of evolution15, where both simplified
models [Peebles, 1984, Zel'dovich, 1970] and simulations
[Kravtsov and Borgani, 2012] can be used, usually providing
complementary insights to understand the evolution of the
large scale struure.is final stage of collapse and formation of
struures will be studied in the next chapter, as it closely relates
to the dynamics and observables of galaxy systems, which is most
important to our application in this work.



1 P. Schneider. xtragalaicstronomy and
osmology. 2006

2

ynamics and roperties of alaxy
ystems

T      are,
because of their complex configurations not only difficult to
resolve, but also convoluted. More than being an assemble of
"particle galaxies" bound by gravitational interaions, member
galaxies play an intricate dance, exchanging both matter content
and energy, with multiple mergers of galaxies at the centre and
accretion of other nearby formed associations. Feedback due
to collisional processes of baryonic matter and other nonlinear
physical processes, also contribute, with the gas and the star-
formation also playing significant roles on final observables1.
It is crucial to understand the relationships implicated by these
behaviours to correly understand the landscape of galaxy system
observables and therefore we proceed first into their formation
history direly from the previous chapter, and then, on to discuss
the role of the large-scale struure in their configurations. To
the end of this chapter, we assess the multiple probes of cluster
and group physics to place this work relative to the framework of
extragalaic astronomy and cosmology.

2.1 rom verdensities to roups and lusters
e linear theory of evolution of density perturbation breaks
down after at some point. We are then forced into using simpler
models for nonlinear evolution or, concomitantly, numerical
simulations [Kravtsov and Borgani, 2012]. Despite its apparent
oversimplification, an overdense sphere will is a very useful model,



46         

2 it is not surprising that, at leading order
r ∝ t2/3, which is just Einstein de-Sitter
universe, where r ∝ a ∝ t2/3

which behaves as a small closed universe with a modified matter
density due to the initial perturbation. Here, there is no need
for this perturbation to be uniform, as the Poisson's equation
guarantees that the evolution of any spherically symmetric
perturbation is the same[Peacock, 2003].

Far into the matter-dominated era, an overdense region can be
described then by a Friedman equation with a different, enhanced
local density, so that we can parametrise the solution by its
proper radius and time as funions of the development angle
ϕ = H0η

√
Ωm − 1, where η is the conformal time as [Gunn

and Gott, 1972]:

t(ϕ) = A(1− cosϕ)
r(ϕ) = B(ϕ− sinϕ) , (2.1)

in which A and B are conneed by A3 = GMB2. Expanding
these relations to fifth order in ϕ gives r(t) for small t as2:

r(t) ≈ A

2

(
6t

B

) 2
3

[
1− 1

20

(
6t

B

)2
3

]
. (2.2)

en, the density perturbation within the sphere will be

δ ≈ 3

20

(
6t

B

) 2
3

. (2.3)

Now we can examine the properties of the solution by looking
at solutions with particular values for ϕ:

• if ϕ = π, the radius is at maximum, and the overdensity
detaches itself from the background evolution and turns
around to collapse. At this point, the density contrast is δtr =
9π2/16 ≈ 5.55. Using just linear theory, we would find that
δtr,lin ≈ 1.06,

• at ϕ = 2π, r = 0, which is an idealisation of collapse. is
occurs when δcol,lin = (3/20)(12π)2/3 ≈ 1.686.

is idealisation, however, differs substantially from reality as
dissipation will a and convert the kinetic energy of collapse into
random motion. By using the virial theorem, we can postulate an
equilibrium at rvir = rtr/2, which occurs at ϕ = 3π/2. By this
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Figure 2.1: Results from simulations showing
the charaeristic steepening slope of dark
matter density profiles. ource: avarro
et al. [1996]

time, the density will have increased by a faor of 23 while the
the background density will have decreased by a faor of 22, since
ρ ∝ a−3 and a ∝ t2/3. e overdensity in the region will be

ρ

ρ̄
= 1 + δvir = 1 + δtr × 8× 4 ≈ 178 . (2.4)

As a conservative threshold, a higher density contrast of ∆c =
200 is defined as the region inside collapsed systems. is defines
a truncation radius and the enclosed mass of a collapsed region as

r200 =

(
3M200

4π∆cρ̄m

)1/3

. (2.5)

Although the ∆c ≈ 178 is a physically derived relation, the self-
similarity of the matter density profile makes the radius definition
somewhat arbitrary. By including the full ΛCDM it has been
shown that a more physically meaningful radius for virialised
systems is the one which has a contrast of ∆c ∼ 330, which is
smaller than the r200 defined by ∆c = 200. Since most literature
still uses 200, it is useful to maintain it for comparing results,
although transformations are pretty straightforward [Johnston
et al., 2007] .

2.2 e ole of osmology in alaxy ystems
After the collapse, overdense regions tend asymptotically to virial
equilibrium, due to increase in entropy by dissipation. Smaller
objes form first and can merge into larger objes, that again, if
left undisturbed, tend to virialise. is charaerises what is called
the hierarchical scenario of struure evolution [Peebles, 1984].
Despite this complex landscape, dark matter particle simulations
have been shown to display a charaeristic shape (fig 2.1) for
radial matter density distributions charaerised by the logarithmic
slope steepening with increasing radius (e.g. Navarro et al. [1996],
Dubinski and Carlberg [1991]).

e density profiles obtained from simulations can be
parametrised in a variety of ways, one of the most commonly of
which is the NFW profile, given by:

ρNFW (r) =
4ρs

x(1 + x)2
, x = r/rs , (2.6)
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3 Other commonly listed profiles are the
Einasto profile, given by:

ρE(r) = ρs exp
[
2

α
(1− xα)

]
, x = r/rs .

and the BMO[Baltz et al., 2009] profile,
a modification of the NFW profile that
incorporates a polynomial, smooth,
truncation in outer regions

ρBMO(r) =
4ρs

x(1 + x)2

(
y2

1 + y2

)n

,

where y = r/rt is a new truncation
radius parameter and n is another truncation
parameter. is is not even remotely an
inclusive list of profile parametrisations, as
there are many others.

where rs is the charaeristic radius, where the logarithm slope of
the radial density curve changes from −2 to −3 at a given scale
radius.3

e self-similar shape of radial density profiles has proven to
be very general, being virtually independent of the shape of the
power sperum and background cosmology [Katz, 1991, Navarro
et al., 1997], a feature usually called universality. However, a
derivation from physical principles of this universal shape is still
an open problem.

e universality of density profiles suggests that a useful tool to
study the matter distribution in the universe is to substitute the
nearly smooth field of densities (or equivalently, density contrasts)
by a colleion of individual dark matter halos. In this ansatz, these
halos contain all matter, and therefore the density distribution
is represented by an interpolation of halos scattered throughout
space[Cooray and Sheth, 2002]. is substitution from matter
distribution to halos is depied in figure 2.2.

Figure 2.2: e complex, smooth,
distribution of matter after the growth of
struure in the universe can be understood
as an interpolation of spherically collapsed
halos. ource: ooray and heth [2002]

To charaerise particular cosmological models then, either
simulations or simple models can be used to derive a prediion
for the number density of collapsed halos of mass in an interval
[M,M + dM ]. is is called the mass funion, and is one of the
central probes of cosmology [Weinberg et al., 2013]. e mass
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4 Scales from ∼ 1Mpc/h to ∼ 10Mpc/h

5

W̃ (k⃗, R) =

∫
R

d3xW (x,R)e−ik⃗·x⃗

W̃ (k⃗, R) =

3

(kR)3
[sin(kR)− (kR) cos(kR)]

(2.9)

funion is important not only to investigate cosmological models,
as it is more sensitive than background evolution [Lima and Hu,
2005], but also important to quantify effes of the large scale
struure in the neighbourhood4 of clusters, as we will see towards
the end of this seion.

As a first ingredient to the mass funion, we must define the
variance of the linear density contrast to our collapse threshold
δc in order to quantify the fraion of collapsed halos per mass.
For a given density contrast field δ(x⃗) we can filter to halos
using a window funion W (x⃗, R), normalised to unity to get a
smoothed field

δ(x⃗;R) =

∫
δW (x⃗+ x⃗′;R)d3x′ . (2.7)

is filter defines an enclosed mass M := cf ρ̄R
3 where cf

is some constant used to normalise the filter. Now, in Fourier
space this convolution integral becomes a produ δ(k;R) =
δ(k)W̃ (kR). Using then a top hat model for the filter, we can
write the filtered variance of the field as a funion of filter radius
R as

σ2R =

∝ξ(R)︷ ︸︸ ︷
⟨δ2(x⃗;R)⟩ = 1

2π2

∫ ∞

0

dk k2P (k)
∣∣∣W̃ (k⃗, R)

∣∣∣2 , (2.8)

where now W̃ is specifically the transform of the top hat
funion.5

If we then transform the into a mass scale by

R =

(
3M

4πρc

)1/3

, (2.10)

where ρc = ρ̄mδc is the density of the collapsed halo we
can use the mass variance σ2(M) to calculate the mass funion
as a funion of density peak height relative to the variance
ν = δc/σ(M). e first statistical model for mass funion was
developed by Press and Schechter [1974], in which the main
underlying idea is that the probability that δM > δc at a given
time is the equal to the fraion of mass contained in halos with
mass greater than M at that time. Using that the distribution
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of density perturbations is a Gaussian random field, the fraion
of fluuations above the threshold δc correspond to collapsed
regions and is given by

F (M) =
1√

2πσ(M)

∫ ∞

δc

dδ exp
[
− δ2

2σ2(M)

]
=

1

2
erfc

[
ν2

2

]
,

(2.11)
where erfc(x) = 1−erf(x) is the complementary error funion.
is result is, however, problematic. Since limx→0 erfc(x) = 1

and limx→∞ erfc(x) = 0, this model predis that never more
than 1/2 of all matter in the universe is inside collapsed regions.
e fraion of dark matter in halos above M then must be
multiplied by an additional "fudge faor" of 2 in order to ensure
that every particle ends up as part of some halo with M > 0.
is is because underdense regions can be enclosed within larger
overdense regions, giving them a finite probability of being
included in some larger collapsed obje.

Now, the number of halos with masses in the range [M,M +
dM ] per comoving volume at a time t n(M, t) can be written as

n(M, t) =
dn
dM

=M
dn

d lnM
(2.12)

Using the formalism idea that ∂F
∂M dM is equal to the fraion of

mass locked up in halos with masses in the range [M,M + dM ]
we find that

n(M, t)dM =
ρ̄

M

∂F

∂M
dM (2.13)

=

fudge︷︸︸︷
2

ρ̄m
M

∂

∂M

1

2
erfc

[
ν2

2

]
dM (2.14)

=

√
2

π

ρ̄m
M2

ν exp
[
−ν

2

2

] ∣∣∣∣d lnσ−1
M

d lnM

∣∣∣∣ dM , (2.15)

which is the PS mass funion.
If we rewrite the mass funion as

dn
d lnM

=
ρ̄m
M

d ln σ−1

d lnM
f(ν) , (2.16)
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6 e Tinker mass funion, which will be
used in this work, is parametrised as

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ2

.

(2.17)

we can recognise that the multiplicity funion f(ν) =√
2/πνe−ν2/2 encodes the charaeristic shape of the Press-

Schechter mass funion.
Further advancements have been made since this first model

and today, numerical simulations give us accurate estimates for
mass funions from specific cosmological models, using the
original PS multiplicity funion as a guide for creating parametric
funions which are then fitted to the simulations results, which
can in turn be compared to cluster counting in surveys [Tinker
et al., 2008] to test new cosmological models. 6

e relationship between the density of collapsed halos is not
equivalent to the density distribution of matter, however. As it
can be seen in figure 2.3, the so called long-wavelength modes of
the density distribution interfere in spatial location, providing a
higher local average ρ̄m and thus enhancing the density of halos
with respe to the density of matter. For that reason, collapsed
objes, be them galaxies, groups or clusters, are biased tracers of
the underlying matter distribution. In regions with a higher count
of objes, the underlying matter density distribution will have a
higher value than expeed by a simple proportion as δm ∝ δh
would suggest. is can be understood under the peak-background
split, which we develop succinly below.

Figure 2.3: Regions with higher density
due to long modes tend to form more
collapsed struures due to a higher local
average density, which influences the mass
distribution around clusters.ource: eacock
[2003]

At first order, we expe that this bias in measuring mass
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7 Formally, δh is the density contrast of
collapsed halos of massm at redshift z1
given a massM in a comoving volume V at
a redshift z0 and is defined by

δh(m, z1|M,V, z0) :=

N(m, z1|M,V, z0)

n(m, z1)V
− 1 .

distribution due to a particular tracer is a linear funion
related to the height of the peak of the collapsed density
perturbation[Cooray and Sheth, 2002] .

For halos, if δh is the contrast of halo density7 in a small region,
then:

δm = bh(ν)δh . (2.18)

A range with a higher local average density can be understood as
a perturbation such that the local collapse overdensity is reduced
as δ′c = δc − ϵ so that now ν = δ′/σM . If we then expand the
perturbed mass funion 2.16 in a power series of ϵ we will have
the number density modulated by

f ′ = f − df
dδc

ϵ , (2.19)

so that the bias will be direly related to the mass funion as

b(ν) = 1− 1

δc

d ln f
d ln ν

, (2.20)

Finally, from simulations for the Tinker mass funion, large
scale bias is parametrised as

1− A
νa

νa + δac
+Bνb + Cνc , (2.21)

where the values A,a,B,b,C, and c are given by table 2.1 .

Table 2.1: Parameters of the bias equation as
a funion of y = log(∆)

Param.
A 1 + 0.24y exp

[
−(4/y)4

]
a 0.44y − 0.88

B 0.183

b 1.5

C 0.019 + 0.107y + 0.19 exp
[
−(4/y)4

]
c 2.4

Now we can finally estimate the effe of clustering in distorting
the cluster mass radial profile due to presence of neighbouring
overdense regions. To do so, we first define the halo-mass
correlation funion as

ξhm(r,M, z) := ⟨δh(x)δm(x+ r)⟩ , (2.22)
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For most of this seion, we follow
arguments from:

P. Schneider. xtragalaicstronomy and
osmology. 2006

that quantifies the excess matter density relative to the
background at a distance r from the centre of a halo of mass M
at a redshift z. Its natural estimator will be given then by

ξhm(r,M, z) =

ρNFW︷ ︸︸ ︷
ρ1h(r,M, z)

ρ̄m
+ bL(M, z)ξLmm(r, z) , (2.23)

where we label bL and ξL the linear bias and the linear mass
correlation funion.

e projeed mass density due to the halo and the large scale
struure can now be written as

Σ(r|M, z) =

∫
dzδρ =

∫
dzρ̄mξhm(r,M, z)

=

∫
dzρ1h + ρ̄mb

L(M, z)ξL(r, z)

= Σ1h(r) + Σ2h(r) (2.24)

where ρ1h is the cluster profile own profile, called the 1-halo
term and ρ2h = ρ̄Mb

L(M, z)ξ(r, z) is the 2-halo term, that is, the
contribution to the profile due to neighbouring halos.

2.3 e nvironment of alaxy ystems
e environment inside clusters and groups of galaxies differ
substantially from the rest of the universe and that results in
measurable effes not only on the aspes and types of galaxies
that populate these overdense regions, but also on the dynamics
of interaions between their contents. One first clear example of
these effes is that the mixture of galaxy types inside of clusters is
visibly different from the field: whereas about 70% of the galaxies
are spirals in the field, clusters are dominated by ellipticals (Fig.
2.4).

We then turn our attention some aspes that determine the
content and dynamics of galaxy clusters and groups, to help us
understand their nature and then proceed to rank their observable
quantities.

Galaxy clusters and groups are composed of matter in densities
from 50 to 200 the average density of the universe. ey have
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Figure 2.4: e galaxy cluster Abell 2218
as imaged by Hubble, provides a display of
the charaeristic image of the environment
of galaxy clusters, as well as their effe not
only in the environment, but, as we will later
see, on the images of background galaxies.
e yellowish hue of elliptic galaxies and a
dominant cD central galaxy shows how the
galaxy population of galaxy clusters stand
apart from that of galaxies of the field. e
thin, distorted arcs are gravitationally lensed
images of background galaxies, that we
will see in chapter 3. ource: mage redit:
NASA, ESA, and ohan ichard (altech,
USA)

masses ranging from 1013M⊙ to 1015M⊙ and typical radii of
around 1Mpc/h. Most of their matter content can be divided
into of 3 different components:

• galaxies, which, by comparing their luminosities and the typical
star populations, can only account for a tiny fraion(∼ 3%)
of the mass, but are one of the main probes of the mass
distribution, as they are expeed to follow overall density, and
are readily visible to ground-based telescopes in optical.

• intracluster medium (ICM), composed mostly of a diffuse
plasma spread throughout the clusters, with very high
temperature (in the range between 107 and 108K) and densities
of the order of 10−3 particles/cm3. e ICM is deteed by X-
ray thermal brehmsstrahlung emissions or by inverse Compton
scattering of the Cosmic Background Radiation, which is called
unyaev-el'dovich Effe (more on the next chapter).

• dark matter, which is indirely inferred by the amount of mass
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8 is violent relaxation time is given as

tV R =

√⟨
ε2

(dε/dt)2

⟩
(2.25)

where ε is the energy per unit mass of the
system. Using the virial relation, it can be
shown that this time is of the order of the
crossing time tRV ≈ tcross ≈ 1/

√
GR,

unlike in the case of two-body relaxation,
where

trelax = tcross
N

lnN
(2.26)

which is much larger than the age of the
universe.

Figure 2.5: e principle of dynamical
friion. e gravitational field of a galaxy
of mass M and velocity v⃗ accelerates other
smaller galaxies to its track, which then a as
a force pulling the massive galaxy backwards.
ource: [ima eto, 2014]

measured that cannot be accounted for with stars and the ICM
and accounts for 80−85% of the total, and can be quantified by
methods that investigate total mass through gravitational effes.

As clusters virialise they tend to appear more spherically
symmetric and to have higher number densities of galaxies
towards their centres. In these more relaxed clusters, the velocities
of galaxies around the centre of mass commonly display a
dispersion consistent to an isothermal distribution. In principle,
this indicates that clusters may have relaxed thermodynamically.
is, however, cannot be true, since two-body collisions of
galaxies inside clusters have negligible dynamical impa, since the
interaion time of the collision is small, due to the high velocity
of the galaxies. However, Lynden-Bell [1967] demonstrated
that large amplitude fluuations in the gravitational field, as in
galaxy formation or collisions, can drive a quasi-relaxation process
that is much faster than the two-body relaxation time. 8 Once
the collapse of a cluster is complete, however, violent relaxation
becomes ineffeive, and the process must continue only through
two-body interaions.

In another important effe shaping cluster environments,
Chandrasekhar [1943] showed that massive objes moving
through a a distribution of lighter objes will be dragged by an
alignment of these smaller ones behind it. is alignment, in
its turn, takes place exaly because the larger obje pulled (See
Fig. 2.5) Originally thought on the case of stars, this is readily
applicable to cluster galaxies, and can be roughly expressed as

dv⃗
dt

∝ −Mρv⃗

|v⃗|3
. (2.27)

is effe is named dynamical friion. Being proportional to
the mass, it is thought to cause galaxies plunge inwards, with more
massive galaxies sinking into the cluster centre.

e observed galaxies in clusters and groups are strongly
correlated in colour. In colour-magnitude diagrams, they will
appear in a nearly horizontal line, called the red sequence. is
red sequence is populated by the elliptic galaxies, displaying a very
small scatter, and being very similar for every cluster at a given
redshift. e red sequence is a powerful tool to identify cluster
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Figure 2.6: A typical massive cD galaxy with
an aive nucleus, M87. (ource: aniere
enezes, IAG elescope, OPD)

of galaxies because it is generally easier to measure colours than
redshifts of galaxies to assess their clustering. In addition, it can
be used to constrain the redshift of the cluster, as used in [Rykoff
et al., 2014] a red-sequence based cluster finding algorithm that is
used in this work, and will be explained in chapter 4.

Regular galaxy clusters also have very bright central galaxies,
normally called rightest luster alaxies, but here referred to as
central galaxies (CG) only, since we will have central galaxies that
are not the brightest in the system. Many of these central galaxies
are cD-type galaxies, giant elliptic galaxies that differ from the
rest of the elliptic population in several aspes. ey have very
extended stellar envelopes, that may exceed R ∼ 100hkpc and
have broader luminosity profiles. Many (from a fourth to half )
cD galaxies have multiple cores, which indicate recent merging
of other galaxies, in what is fancifully called galaic cannibalism
[Dubinski, 1998].

ey also have larger axes roughly aligned to the same direion
of the overall galaxy distribution in the cluster and even with
respe to the larger scale struure, which cannot be attributed
to rotation [Carter and Metcalfe, 1980].

Overall, the innermost regions of galaxy clusters is special, as
the more extreme environment makes two-body collisions, that
as said before are negligible for typical galaxies in outer regions,
important. is argument, along with dynamical friion, are
the cornerstones of the last seion of this chapter, where we talk
about fossil clusters, in which these processes are believed by some
(e.g. Ponman et al. [1994], Jones et al. [2003]) to have led to
overgrown central galaxies, in expense of their nearby, massive
companions.

Turning now to the gas content of clusters, the ICM is sparse,
but very hot, emitting brehmsstrahlung radiation on X-rays,
with luminosities of the order of LX ∼ 1043 − 1045erg/s
and constitute the greatest fraion of cluster baryons. Instead
galaxies, which are almost non-collisional, the gas shows struure
charaeristic of fluid flows, specially when different clusters
collide, as in the famous ullet cluster. e separation of gas
and dark matter profiles in these systems is today one of the most
pressing arguments against modified theories of gravity to account
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9 Aive Galaic Nuclei are thought to be
supermassive black-holes, which in turn are
another prediion of ETG, as we have
discussed in chapter 1.

10 analogous to the mass funion for whole
clusters

for the missing mass problem in galaxies and clusters [Clowe
et al., 2006], as well as helping constrain dark matter models
[Harvey et al., 2015].

Because the gas emits radiation with such an immense power,
it was expeed that the gas would cool and flow towards the
centre of the cluster [Fabian, 1994, Croton et al., 2006]. ese
cooling flows have been inferred in the form of sharp central peaks
in central emissivity, but they do not correspond to the total
expeed cooldown. e leading hypothesis for the prevention
of massive cooling flows is the reheating of the gas due to the
feedback provided by ive alaic uclei (AGNs).9

Groups are the smaller systems of galaxy associations. ey are
composed of a few galaxy of a few galaxies of luminosity L ∼
L∗ (see the next seion) and comprise slightly more than half of
nearby struures in the universe, being responsible for about 1%
of the luminosity density of the universe.

2.4 bservables of alaxy ystems
e main features that are physically relevant for galaxy cluster
astrophysics are the total mass, total luminosity, and relaxation
status whereas for cosmology, the number counts of clusters
per mass interval is, as we have previously seen, of particular
importance. Unfortunately, except for luminosity, none of these
constitute a dire observable.

e charaerisation of cluster luminosity is given by its
distribution, which is can be described by the distribution
of galaxy counts per luminosity interval, or the luminosity
funion. e luminosity funion of galaxies10 do not differ
qualitatively from galaxies in the field to those in systems, and can
be represented by a Schechter funion [Schechter, 1976], where
Φ(L)dL represents the number of galaxies in a luminosity interval
[L,L+ dL], as:

Φ(L) =

(
Φ∗

L∗

)(
L

L∗

)α

exp
(
− L

L∗

)
(2.28)

where L∗ is a charaeristic Luminosity above which the number
of galaxies decreases exponentially, and Φ∗ is the normalisation of
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the distribution. e luminosity funion can also be written in
terms of magnitude as.

Φ(Mλ) = (0.4 ln 10)Φ∗100.4(α+1)(M∗
λ−Mλ) × exp

(
−10(M

∗
λ−Mλ)

)
(2.29)

where Mλ is the absolute magnitude of the galaxy at a filter
around the frequency λ.

e total luminosity of the cluster can be then calculated as

Ltot =

∫ ∞

0

dL LΦ(L) = Φ∗L∗Γ(2 + α) (2.30)

where Γ(x) is the gamma funion Γ(x) :=
∫∞
0 tx−1e−tdt.

Masses of clusters can be charaerised by the radial density
distribution, as shown before. ese masses must always be
measured by proxy, since they cannot be readily measured.
Fortunately, a range of mass proxies exist such as the temperature
of the intracluster medium plasma, displacement of the CMB
sperum due to the Sunyaev-Zel'dovich effe, luminosity and
richness, which is the number of galaxies in the cluster, the
velocity dispersion of member galaxies and finally, distortions of
background galaxies due to gravity, which will be studied in detail
on chapter 3. We briefly describe other mass proxies here to place
ourselves into that piure, and to draw some commentaries on
the application.

e temperature of the intracluster gas strongly correlates with
the total mass, because the depth of the gravitational potential
is related to the mean kinetic energy of the gas particles, if we
assume hydrostatic equilibrium. e mass enclosed inside a radius
r is given as a funion of the radial profiles of gas density and
temperature as

M(r) = −kBTr
2

Gµmp

(
d ln ρg

dr
+

d lnT
dr

)
(2.31)

where kB is the Boltzmann constant, µ ≈ 0.63 is the average
mass of gas particle per units of proton mass mp, and ρg is the
density of the gas. In current praice, a mass-temperature relation
is calibrated by weak lensing measurements to avoid lack of
accuracy due to simplified assumptions, which do not take into
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11 G.B. Lima Neto. stronomia
xtragaláica. 2014

account a variety of other phenomena, such as the feedback due
to AGNs in massive galaxies , that can bias the mass-temperature
relation significantly.

e ICM gas temperature itself can be measured by X-ray
speroscopy, in space-based telescopes as Chandra and XMM-
Newton 11 or through the observation of the Sunyaev-Zel'dovich
effe, as the inverse Compton scattering by the ICM elerons
pushes incoming CMB photons to higher energies. One of
the advantages of this method is that it can probe and find
clusters of galaxies to much greater distances, since the SZ effe
is independent of redshift (as the CMB is further behind any
struure in the universe). e gas is isothermal and is described
by a β-model, temperature of the ICM is related to the shift of the
CMB temperature and luminosity distance by

TX ∝
(
∆T

T

)4/3

CMB

d−4
L . (2.32)

where dL is the luminosity distance (Eq. 1.25). e velocity
dispersion of the galaxies galaxies provide another way to measure
the mass of a galaxy cluster. Using the virial theorem, one can
show that

M =
3πRGσ

2
v

2G
, (2.33)

where RG ∼ 1Mpc is the gravitational radius and σv is the
velocity dispersion, measured by comparing galaxy redshifts to the
cluster overall redshift.

Both gas temperature and velocity dispersion models assume
some sort of dynamical equilibrium. Another way to investigate
the mass distribution in clusters is through the observation of
the gravitational effes on the light of background galaxies. is
method is called gravitational lensing and will be discussed in
detail in the next chapter, as it will be put to use in part II.

e radial distribution of mass, galaxies, luminosity, and so on
can only be direly investigated in the plane of the observation,
not in the line of sight direion. Consequently, all quantities
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12 missing, perhaps in the sense of missing an
explanation, since it is an excess, not a lack of
mass.

must be transformed to projeed quantities as

Σ(R) =

∫ +∞

−∞
dzρ(

√
R2 + z2) = 2

∫ +∞

R

drρ(r)√
r2 −R2

. (2.34)

e projeed mass density can also be written as a differential
mass density, which will be useful as it is direly observable by
lensing, as

∆Σ(R) = Σ̄(r < R)− Σ(R) (2.35)

Where Σ̄(r < R) is the average density in a region inside R,
that is

Σ̄(r < R) =

∫ R

0 2πrdrΣ(r)∫ R

0 rdr

=
2

R2

∫ R

0

dr rΣ(r) (2.36)

In praice, today, gravitational lensing is used to calibrate
scaling relations between either gas properties or luminosity to
cluster masses. Since the cost of dire speroscopy is prohibitive,
this allows us to study a greater number of systems to use in the
determination of the mass funion.

e measurement of luminosity and masses are also combined
as M/L ratios. Since it is known that reddish K-stars that
populate elliptic galaxies have mass-to-light ratios of the order
(M/L)K ∼ 3(M⊙/L⊙), it is interesting to compare to the mass-
to-light ratio of these galaxies. e result, known as early as 1933
[Zwicky, 1933] is that the mass-to-light ratios in clusters is(

M

L

)
∼ 300h

(
M⊙

L⊙

)
, (2.37)

which displays a discrepancy of around two magnitudes. is
missing12 mass problem originated the idea of dark matter, an
ingredient today considered crucial to explain the large scale
struure of the universe and many derivative effes observed in
modern surveys.
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2.5 agnitude aps and ossil ystems
We now turn to study in particular one aspe of galaxy systems,
the luminosity dominance of the central galaxies in systems,
which will be the main focus of our application. It has been
known for some time that central galaxies in groups and clusters
are significantly different from other galaxies in both their
morphological aspes and their scaling relations [von der Linden
et al., 2007]. First, they differ in that they do not normally fit into
the luminosity funion of their own clusters, in the Schechter
model. Also, they have different M/L ratios, metallicities, and
other scaling relations from typical elliptic galaxies, even when in
comparison to those of the same scale.

e relationship between the central galaxy and their parent
systems is, in turn, important to understand evolutionary effes
on galaxies and the origins of galaxy groups and clusters. In this
context, the dominance of the CG, most of the times quantified
by the difference in magnitude of the (usually brightest) CG
to the second brightest in the central region, that is defined
by some fraion of r200, has been suggested as an indicator of
the relaxation of the system, because it is thought that larger
magnitude gaps identify systems that had more time for the CG
to cannibalise the L∗ galaxies in the inner region.

e first identification of a group where the central galaxy was
overly dominant was made by Ponman et al. [1994], when they
suggested that the system RX J1340.6+4018 was possibly the relic
of a former group of galaxies. At first, it was thought to consist
of a single galaxy with an extended X-ray halo, but it was later
shown [Jones et al., 2000] to be aually a group of about N ∼
10 galaxies, out of which the central galaxy accounts for about
∼ 70% of the total optical luminosity, being thus consistent with
it being the merger produ of the missing L∗ galaxies around it.

A formal, empirical definition was given afterwards by [Jones
et al., 2003] for such fossil groups, and is expressed by

• a high luminosity in X-rays LX ≥ 0.25× 1042erg s−1,

• an absolute magnitude gap between the central, usually most
luminous galaxy and the second brightest galaxy greater than



62         

∆M1−2 =MBCG −M2BG ≤ −2 within half the projeed r200
radius.

With this definition, the number of such systems is very small
(about ∼ 2% of all systems), and only a handful of them have
been studied in detail - at first, only groups. In time, however,
larger systems were discovered [Cypriano et al., 2006] and have
been called as fossil clusters, by analogy.

Using simulations, from which halo formation and evolution
can be traced, Dariush et al. [2007] observed that systems with
larger magnitude gaps form earlier, on average, lending support
to the fossil hypothesis. By earlier here, it is meant that the system
has reached the current mass sooner than the average of all halos:
these simulations show that fossil groups accreted on average
only 1 further galaxy since z = 1, compared to the average of 3
for other groups [von Benda-Beckmann et al., 2008, D'Onghia
et al., 2005]. e argument is then that because their mass has
been assembled before, they have had more time to virialise, with
inner cluster dynamics dominating evolution whereas systems that
remained accreting mass had external sources for more L∗ galaxies.

Another argument for an early formation epoch for these groups
is based on observations of these systems, although rare, including
through X-ray scaling relations [Khosroshahi et al., 2007] and
morphological studies of their central galaxies [Khosroshahi
et al., 2006] . Putting all these together into a coherent piure
for the overall population, FGs have been repeatedly suggested
(e.g. Harrison et al. [2012], Dariush et al. [2010], Khosroshahi
et al. [2007] and many others) to be more relaxed systems and,
as such[Mantz et al., 2015], to provide unique clues on the
history of cosmic mass assembly, the interaion between baryonic
matter and host dark matter halos, and to carry information from
struure formation at early epochs of the universe.

Dariush et al. [2010] has also proposed to modify the criterion
for the optical seleion of fossil groups to ∆M1−4 ≤ −2.5,
finding it to be a more efficient probe of identifying early-formed
halos than the conventional definition. e idea that fossil
systems (FSs) represent early formed unperturbed systems is
not uncontroversial, however. Random draws from Schechter
luminosity funion with a lower number of galaxies have a
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higher probability of seleing larger magnitude gaps in the
bright end[Hearin et al., 2013], so that the displayed effe could
be of statistical nature [Proor et al., 2011]. Paranjape and
Sheth [2012] employed extreme value statistics to show that the
distribution of galaxy groups as a funion of magnitude gap
can be consistent with the distribution resulting from a set of
random draws from a global luminosity funion, implying that
the group mass is only related to the magnitude gap through
mutual covariance with richness. [Mulchaey and Zabludoff,
1999], analysing NGC 1132, have suggested that fossil groups
may consist of failed groups, that is, local overdensities in which
other bright galaxies never formed. e masses and M/L ratios
of the central galaxies of FSs are also usually too large to be
explained as end points of compa group evolution driven just
by dynamical friion[Voevodkin et al., 2010]. e basic merger
interpretation, however, remains viable, as previously discussed
here, in the context of simulations.

Furthermore, the luminosity funion of the first fossil group
[Jones et al., 2000] and the conclusion that it resides in a sparse
environment, was suggested by [D'Onghia and Lake, 2004]
to pose a problem for the cold dark matter models, since they
did not have as much substruure as expeed for such massive
systems. On the other hand, simulations have shown that the
luminosity funion of three FGs, including the first identified by
Ponman et al. [1994], RX J1340.6 + 4018, are consistent with
ΛCDM prediions. Finally, in contrast to considering FSs as
peculiar systems, another possibility that has been speculated is
that groups and clusters may go into a fossil phase in their lives,
with an absence of significant mergers, with enough time for
relaxation [von Benda-Beckmann et al., 2008]. A bright galaxy,
or a group, may then sink to the inner region of the system and
the obje will return to appear as a normal group or cluster of
galaxies. Dariush et al. [2010] find that the mass assembly history
is similar by these two methods, on average. About 90% of fossil
groups which were identified according to both criteria in earlier
epochs become non fossils after 4Gyr and the fossil phase persists
for ∼ 1Gyr. Using semi-analytic models based on the Millennium
simulation [Springel et al., 2005],Gozaliasl et al. [2014] have
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shown that 80% of groups (13 < logM200 < 14 in M⊙) that
would classify as fossil at redshift z = 1 lose their large magnitude
gaps, but that 40% of the clusters (logM200 > 14 in M⊙), on the
other hand, retained large gaps.

Proper statistical comparisons between populations of observed
fossil systems and other, typical galaxy associations are still in
their infancy since the low number of fossil systems and their
lower representation on the existing X-ray surveys do not provide
enough statistics. In any case, fossil systems are relatively rare.
Dariush et al. [2010] has reported that using the ∆M1−2 ≤ −2,
the fraion of fossil systems is 2% in observations and 2.1% in
simulations. Using ∆M1−4 ≤ −2.5, 6.2% and 5.1% are fossils,
in observation and simulation respeively.

Currently, the state of affairs about the true nature of FSs, if
they are or not physically singular systems with earlier accretion
histories, remain undecided. In these terms, our work places itself
as another step in the study of these systems in order to assess if
they consist of a separate statistical population.

In a final commentary, particular to this work, we note that
despite the fa that the original definition of FSs include an X-
ray threshold, there is interest in the study of systems seleed
on optical criterion alone, the optical fossil candidates [Dariush
et al., 2007], since the scaling relations of the X-ray gas have been
shown to be in concordance with the overall population of galaxy
clusters and groups. is is the approach we take: to charaerise
and compare the magnitude gap to the mass, mass concentrations,
and M/L ratios, by using gravitational lensing over a population
of ∼ 1500 systems. We also do not simply divide the population
into fossil and non fossil optical candidates since the low number
count of fossil candidates would handicap the cross-correlation
weak lensing technique we adopt to maximise our lensing signal
(more details in chapter 3 and chapter 4).



1 Using the Schwarzschild metric with rs
being the charaeristic radius and a light ray
with impa parameter be equation for
the total defleion angle is:
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which yields

â ≈
2rs

b
=

4GM

c2b
. (3.2)

e two-fold faor aually is tied to
another effe correly addressed by the
theory, the precession of orbits. Both are
due to the non-conservation of the Laplace-
Runge-Lenz veor in ETG.

3

ravitational ensing

G L is the name given to the defleion
of light rays by gravity. It is one of the best understood and most
remarkable effes of ETG, and was among the first empirical
tests performed to validate it. e idea that gravity should a on
light precedes Einstein's work by more than a century by Soldner
[1804], and is related to the description of light as a stream of
luminous particles. Adopting this point of view, together with
the equivalence principle, Einstein re-derived the defleion angle
for light particles approaching a gravitation source with a given
impa parameter.

However, after the discovery of the full field equations (Eq. 1.1)
it was perceived that the total observed defleion angle should
aually be twice the classical result - this faor of two is a result
of properties of the curvature of the lorenzian manifold.1 is
offered a prototypical scenario to test the new theory of gravity
against the old Newtonian paradigm. In 1919 a solar eclipse
provided the perfe opportunity: the knowledge of the position
of stars in the sky was sufficiently precise to dete the predied
defleion [Dyson et al., 1920] and the result supported Einstein's
theoretical results.

e specific subje of gravitational lensing was, however,
to remain relatively quiet in the next decades. After a running
discussion among Eddington [1920], Chwolson [1924] and
Einstein [1936] it was thought that the phenomena would be
an occurrence too rare to observe - considering only chance
alignment of stars. Zwicky, however, pointed that entire galaxies
could display visible effes on other farther galaxies behind.
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Figure 3.1: Upper: e double quasar
QSO0957 + 561 depied by the Hubble
Space Telescope in the upper right area of
the image as the "star like" objes with
diffraion rays. e reddish light between
them is the forefront defleor galaxy. eir
spera matches as an obje at redshift
z = 1.413, with the defleor at z = 0.355.
e separation is of about 6′′. ource:
ESO/NASA. Lower: Reproduion of the
spera of each component, from Walsh et al.
[1979]

Furthermore, having calculated the masses of Virgo and Coma
clusters to be higher than previously thought by no less than 2
orders of magnitude [Zwicky, 1933], he argued that the defleion
of light of distant galaxies could provide not only tests of ETG but
also allow the determination of cluster masses. Finally, Zwicky
calculated the lensing probability and concluded that about
one percent of distant galaxies should be significantly distorted
[Zwicky, 1937]. Nonetheless, his prediions would wait several
more decades until adequate observational technologies brought
Gravitational Lensing back to the spotlight.

In 1964 Sjur Refsdal derived the main equations of the lensing
formalism, and showed a method to estimate the Hubble constant
H0 [Refsdal, 1964a,b] - by measuring the time delay between two
different lensed images of the same obje. With the subsequent
discovery of quasars [Schmidt, 1963] , it was proposed that
gravitational lensing by galaxies could be used together with these
distant, extremely bright objes to probe the masses of galaxies,
and realise Refsdal's ideas. Finally, only fifteen years latter, came
the first observation of a doubly lensed quasar, by Walsh et al.
[1979] (Fig. 3.1).

e coming of the age for cluster astrophysics, on the other
hand came in the late 70's and early 80's. With that Narayan
et al. [1984] explored in detail the possibility of clusters aing
as powerful lenses. Finally, [Lynds and Petrosian, 1986] and
Soucail et al. [1987] independently discovered images of "giant
arcs", which have shown to be strongly distorted images of distant
background galaxies near the core of forefront galaxy clusters.
is was immediately interpreted by Paczynski [1987] as the
effe of gravitational lensing - what would be confirmed by the
measurement of the redshift of the arc in Abell 370 [Soucail et al.,
1988].

e construion of the Hubble Telescope, the advances in
ground telescopes, and with these the ability to precisely measure
galaxy shapes in astronomical images all paved the way for the
systematic use of Gravitational Lensing not only as an observation
of ETG effes but also as a tool to measure charaeristics of
galaxy clusters, the search for very high redshift galaxies and
even exoplanets - a great variety of results, in the same fashion
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2 (...)as in the Born approximation in
quantum mechanics.

3 In the context of cluster lenses, this
condition holds very generally, a cluster
of galaxies has a scale of few Mpc, whereas
the distances of lens systems and their lensed
sources are considerable fraions of the
Hubble length cH0, which is about 4.3Gpc.

as speroscopy went from a hint of the quantum nature of the
atomic struure to a basic technique to investigate properties of
baryonic matter.

3.1 eneral ensing eory
Since the environment of galaxy clusters have small curvatures,
ETG in such vicinities can be approximated by linearisation. en
the defleion due to a spatially extended mass can be written
simply as a veor sum over point masses. In the continuum limit,
this sum becomes an integral over the spatial density distribution
ρ(x⃗). Now, if the defleion is small we can approximate the
gravitational potential along the defleed trajeory by the
potential along the undefleed trajeory.2 Using a system of
coordinates in the plane of the sky ξ⃗ − ξ⃗′ = b and the redshift
in the line-of-sight z, defleion angle will be given then by a sum
of the contributions of each point:

⃗̂α(ξ⃗) =
4G

c2

∫
dm =

4G

c2

∫
ρdV (3.3)

⃗̂α(ξ⃗) =
4G

c2

∫
d2ξ′

∫
dzρ(ξ⃗′, z)

b⃗

|⃗b|2
, b⃗ ≡ ξ⃗ − ξ′ . (3.4)

In which the first integral is calculated over the plane -
in praical situations, a large enough area - and the second
throughout the line of sight up to the source obje redshift. In
the limit of a thin lens3, where the distances between the source,
lens, and observer are much larger than the size of the defleor,
we can use the projeed mass density

Σ(ξ⃗) =

∫
ρ(ξ⃗, z)dz , (3.5)

so that the defleion can be rewritten as:

⃗̂α =
4G

c2

∫
(ξ⃗ − ξ⃗′)Σ(ξ⃗′)

|ξ⃗ − ξ⃗′|2
d2ξ′2 . (3.6)

With the relationship between the defleion angle and the
defleor mass distribution built from the theory, what remains
is a purely (pseudo-riemannian) geometrical problem. e typical
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situation considered in lensed systems has a defleor at a certain
redshift zd, a set of sources with redshifts zs. e source and lens
planes are defined as planes perpendicular to the optical axis of the
observer (the dashed line in the figure).If η⃗ is the two-dimensional
position of the source relatively to this axis, then we can write

Figure 3.2: Gravitational lens geometry.
In the thin lens approximation we can
consider that all the change in direion of
the light rays takes place in a specific plane.
Here, all distances used must specifically
be angular diameter distances, since
the large scale struure of space-time is
not euclidean.ource: [artelmann and
chneider, 2001]
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⃗̂α(ξ⃗) , (3.7)

which, using angular coordinates η⃗ = Dsβ⃗ and ξ = Ddθ⃗ can be
written as:

β⃗ = θ⃗ − Dds

Ds

⃗̂α(Ddθ⃗) . (3.8)

is is the so-called lens equation for the system and can be
understood as saying that an obje which would be observed
at a "true" position in the sky β⃗ = (β1, β2) in its source plane
will be seen at another position θ⃗ = (θ1, θ2) in an "image"
plane according to the defleion given by ⃗̂α and the given ratio
of angular diameter distances.
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4 Note that Σ > Σcr is a sufficient but not
necessary condition for multiple solutions:

P. Schneider, J. Ehlers, and E. E. Falco.
ravitational enses. 1992

In the original case of star images being displaced due to
the gravity of the Sun, we had both β⃗ and θ⃗, since the angular
separation of the sun and the stars vary with time. However, deep
obje configurations do not change significantly and then neither
β⃗ nor ⃗̂α can be direly observed as θ⃗, Dd, and Dds can. So we
seem then to have reached an insurmountable dead-end.

e solution to this problem comes - in very different ways -
by using the lens equation multiple times and constraining them
all together to make such system solvable. e constrain itself
comes, as we will see, from the fa that there can be reasonable
assumptions about the sources and the defleor.

To proceed, it is useful to define a funion that depends on just
the distances of the defleor and some source, called the critical
surface density of the lens as

Σcr :=
c2Ds

4πGDdsDd
. (3.9)

One of the main reasons behind this definition is that it can
be proven that arrangements of lens-source pairs in which the
projeed surface density surpasses this critical value, the lens
equation will display multiple solutions4.en, when the lens
equation displays multiple solutions, a single source will be
displayed in multiple images around the lens.

Rewriting the angle equation with the critical density, we have:

κ(θ⃗) =
Σ(Ddθ⃗)

Σcr
. (3.10)

Inserted to the defleion angle equation, this yields:

α⃗(θ⃗) =
1

π

∫
d2θ′

(θ⃗ − θ⃗′)κ(θ⃗′)

|θ⃗ − θ⃗′|2
,

which suggests introducing a 2D gravitational potential ψ for
which

∇2ψ = 2κ (3.11)

holds. is describes a line-of-sight integrated two-dimensional
"Newtonian" potential, rescaled by Σcr, called the lensing
potential, such that now ⃗̂α(θ⃗) = ∇⃗ψ(θ⃗) and κ(θ⃗) = 1

2∇
2ψ(θ⃗).
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Figure 3.3: e effes of the two
components of the lensing transformation.
κ changes the size of images while γ distorts
images laterally.(ource: ikipedia)
5 where ϕ is the angle between the shear
frame and one coordinate axis

e lens equation together with the density-defleion relations
define a surjeive mapping from the image plane θ⃗ onto the
source plane β⃗. e shape of the images of extended objes
will differ from the shape of their respeive sources because
the defleion of light ray bundles is locally differential. We can
then investigate these local properties of this mapping in small
neighbourhoods through the Jacobian matrix, given by:

Aij =
∂βi
∂θj

= δij −
∂αi

∂θj
= δij −

∂2ψ

∂θi∂θj
. (3.12)

Evaluating each term in the Jacobian we can write the
transformation matrix explicitly as:

A =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
, (3.13)

where we introduced:

γ1 =
1

2

(
∂2ψ

∂θ21
− ∂2ψ

∂θ22

)
(3.14)

γ2 =
∂2ψ

∂θ1∂θ2
. (3.15)

e reason why we introduced γ is simply because the
transformation A can now be expressed as two observationally
different effes.

If we combine γ1 and γ2 into a complex quantity γ =√
γ21 + γ22e

2ϕi we can then write:

A = (1− κ)

[
1 0
0 1

]
− |γ|

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
. (3.16)

5

e local distortion of the images can now be understood as a
convergence part κ, that gives us how much an image is enlarged or
diminished in area, and the traceless shear γ, which quantifies how
much an image is laterally distorted.

ere are two remarks that should be made about the local
properties of the lensing transformations:
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6 P. Schneider, J. Ehlers, and E. E. Falco.
ravitational enses. 1992

7 A nice example is that presented by
an isothermal sphere mass distribution.
Using the an isothermal mass distribution
[Schneider, 2006] we have:

Σ(ξ) =
σ2
v

2Gξ
,

which yields

κ(θ) =
θE

2θ
,

with

θE = 4π
(σv
c

)2 Dds

Ds
,

where θE is called the instein radius of the
lens. In this case, we have:

|α⃗| = θE

ψ(θ⃗) = θEθ

µ(θ⃗) =
θ

θ − θE
,

so that when θ ≈ θE , β ≈ 0, and the
magnification is very large as we can see in
the incredibly near-perfe alignment below:

ource: NASA

• the shear γ is not a veor, due to its transformation properties
under rotations: the components of the shear are mapped onto
themselves (an identity transformation) with a half-rotation.
e reason for this behaviour due to it being the traceless part
of the jacobian matrix (3.16). Hence, the shear is aually a 2-
spinor.

• the convergence κ preserves surface luminosity, due to
the theorem of conservation of étendue, which can be better
understood in Hamiltonian optics as an analogue of Liouville's
theorem.6

e ratio between the solid angles of a local neighbourhood in
the image plane and its respeive "original" source distribution is
given by:

µ =
θ

β

dθ
dβ

=
1

detA
=

1

(1− κ)2 − |γ|2
, (3.17)

and is called the magnification. ere may be regions in
a configuration where this determinant is zero, which will
correspond to a critical curve in the plane of images, and a
respeive caustic in the source plane. is suggests there are areas
which have infinite magnification, which evidently cannot be true,
which is due to approximations taken in this derivation. Still,
in such cases, dramatic arcs and even ring images of background
objes appear.7

When such effes of distortion and multiple imaging is present,
we call this trong ravitational ensing and the method for
determining masses of defleors usually involves reconstruions
of the source based on the likelihood of the multiple images or
giant arcs displayed being mapped to some original configuration
- this solves our "dead-end" by enabling multiple uses of the
lensing equation for each. e counterpart, eak ravitational
ensing, refers to situations where light rays from distance
sources is just slightly distorted in a coherent fashion. In these
configurations, the effe is quantifiable through a statistical
measure of shapes of background objes which provide an
estimator for γ as well as κ, the former we will see in the next
seion.
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More recently, the number counts of background objes has
been also used for mass profile measurements. Since the effe of
a gravitational lens is to spread out the image of the background
sources, from this alone you would expe a decrease in the
projeed number density of background galaxies. However, since
magnification, as we have seen, enhances the flux of background
objes you would expe an increase of objes in images - which
are limited by flux. e interplay between these effes can be
modelled in comparison to undefleed fields in regions away
from cluster centres to determine projeed mass distributions, in
a way that defeats the mass-sheet degeneracy, as the magnification
is immune to such invariance. It is in this way that weak lensing
can provide an estimator for κ.

Finally, as a note, the study the region in-between the strong
and weak regimes - the flexions - has also been employed as a
complimentary technique to bridge and combine strong and weak
lensing for a deeper, more complete analysis of mass distributions
through lensing effes.

For strong Lensing, magnification and flexions the reader is
recommended to Merten [2010, 2008], Meylan et al. [2006]
and others, as we now draw our attention to weak lensing shear
analysis, which will be our main tool in the application.

3.2 eak ravitational ensing

While the presence of any amount of matter density defles the
path of light rays passing around it, this effe will rarely present
itself as the giant arcs and multiple images usually associated with
gravitational lensing. Most regions in the sky are very slightly
affeed by foreground mass distributions, being deeply into the
weak lensing regime, in which the defleion is impossible to
quantify by a single background source. Fortunately, even in
such cases, the presence of the foreground mass can be deteed,
by way of a systematic alignment of background sources around
the lensing mass. Weak gravitational lensing will be then an
intrinsically statistical measurement, which overcomes the
subtlety of the effe by combining a large number of individual
measurements.
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8 Ellipticities are usually defined by the ratio

ε := 1− q = 1−
b

a
,

where b/a is the axis ratio of the ellipse. In
gravitational lensing it is customary to define
quantity

ϵ :=
1− q

1 + q
e2iϕ ,

where ϕ is the same we have seen before in
the shear definition - ellipticity, as shear, is
transformed into itself by a half-rotation.
Joining this with the elliptical parameters

Q11 = a2 cos2 ϕ+ b2 sin2 ϕ

Q22 = a2 sin2 ϕ+ b2 cos2 ϕ

Q12 = (a2 − b2) sinϕ cosϕ ,

gives the ellipticity definition a praical
meaning.

In regions that κ, γ ≪ 1, the Jacobian of the lensing
transformation - and by it an estimator for Σ - can be mapped by
observing the combined effe of the shear γ on the distribution
of projeed ellipticities of background galaxies: as the shapes of
a colleion of source galaxies will be dominated by their nearly
random distributed unlensed shapes, coherent distortions can
single out and quantify lensing effes.

Even if galaxy shapes are not perfe ellipses, their ellipticities
can be measured by finding best-fit elliptical models to the
sources, or by measuring the second moments of the image
about centroids. For a given image, if the distribution of surface
brightness in a small neighbourhood around a source is given by a
funion I(θ⃗), the centroid of the obje can be estimated by the
average of the distribution

⟨θ⃗⟩ =
∫

d2θI(θ⃗)θ⃗∫
d2θI(θ⃗)

, (3.18)

whereas the second moment tensor is given by

Qij =

∫
d2θI(θ⃗) (θi − ⟨θi⟩) (θj − ⟨θj⟩)∫

d2θI(θ⃗)
. (3.19)

If we then define the ellipticity of the obje as8

ϵ :=
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2
√
Q11Q22 −Q2

12

, (3.20)

we can write then the second moment tensor of the unlensed
source with the observed tensor Q and the transformation A as

Qs = AQAT = AQA , (3.21)

which gives us the original ellipticities of the source as

ϵs =


ϵ− g

1− g∗ϵ
, |g| ≤ 1

1− gϵ∗

ϵ∗ − g∗
, |g| > 1
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with the reduced complex shear g given by

g(θ⃗) =
γ(θ⃗)

1− κ(θ⃗)
. (3.22)

Now, the ellipticity expression can be inverted to give

ϵ =


ϵs + g

1 + g∗ϵs
, |g| ≤ 1

1 + gϵs∗

ϵs∗ + g∗
, |g| > 1

. (3.23)

If we consider many galaxies in a small neighbourhood of the
image, using our ansatz that the intrinsic ellipticity ϵs is randomly
distributed we have ⟨ϵs⟩ = 0, so, the averaged measured ellipticity
should amount to

⟨ϵ⟩ =


g, |g| ≤ 1

1

g∗
, |g| > 1

. (3.24)

So, in the weak lensing limit the averaged ellipticities in a
small region provides an estimator for the local reduced shear g.
However, g is a single quantity, but κ and γ are two and κ is the
quantity most direly related to the mass distribution, through
Σ = κΣcr. Any transformation of the form

1− κ′ = λ(1− κ)

γ′ = λγ

leaves g unaltered. is is the so called mass-sheet degeneracy,
because it amounts to the fa that a sheet of uniform surface
density does not produce any lensing effes. is is a serious
problem to the calculation of masses of individual clusters and
can be dealt with in some ways, the most straightforward of them
is to consider magnification effes. Since the quantity

µ =
1

(1− κ)2 − |γ|2
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9 is is, in some approximated way, a
dire consequence of Birkhoff's eorem:
spherical solutions can be seen as point
masses with at a large enough distance.

is not invariant through the aforementioned transformation,
it can be used to calibrate the shear/convergence-reduced shear
relation.

Another useful way to constrain the degeneracy, used in cluster
surveys and in this work, is to assume a spherical distribution
of the lens mass, this immediately breaks the degeneracy by
introducing a model for the line-of-sight mass distribution, with a
one-to-one correspondence between κ and γ.

3.3 arametricodelling
e universality we previously discussed of the halo mass
profile provides us a method to use gravitational lensing to
investigate observables of galaxy systems. An axisymmetric matter
distribution can be described by a radial funion Σ(θ⃗) = Σ(θ) so
that the defleion angle yields

α⃗(θ⃗) =
θ⃗

θ2
2

∫ θ

0

dθ′θ′κ(θ′)

ˆ⃗α(ξ⃗) =
ξ⃗

ξ2
4G

c2
2π

∫ ξ

0

dξ′ξ′Σ(ξ′)

=
4GM(< ξ)

c2ξ

ξ⃗

ξ
,

where M(< ξ) is the total mass enclosed inside radius ξ.9

Since all direionsβ⃗, θ⃗, and ˆ⃗α are collinear we can write the lens
equation with scalars

β = θ − α(θ) , (3.25)

where the defleion angle is given by

α(θ) =
m(< θ)

θ
= κ̄(< θ)θ , (3.26)

where again m(< θ) is the dimensionless mass enclosed inside
the radius θ and κ̄(< θ) is the averaged convergence in the same
region. e Jacobian matrix can be then calculated rewriting the
lens equation as

β⃗ =
[
1− κ̄(< |θ⃗|)

]
θ⃗ , (3.27)
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then applying the definition (eq. 3.16) we arrive at

A(θ) = [1− κ̄(< θ)] 1 − 1

θ

dκ̄
dθ

[
θ21 θ1θ2
θ1θ2 θ22

]
. (3.28)

If we now transform θ into a polar coordinate system around
the centre of the distribution, we can write θ⃗ = θ(cosϕ, sinϕ)
which, together with the former presentation of the jacobian
matrix in eq. 3.16 yields:

γ(θ) = (κ̄(< θ)− κ(θ)) e2ϕi (3.29)

It is easy to see that whenever a given ellipticity γ is rotated
by ϕ the result amounts to a multiplication γe−2ϕi, so we can
define a polar coordinate system for the ellipticities such that
γp := γe−2ϕi. Like the Cartesian ellipticity, the polar ellipticity
admits a separation in two components which are the tangential
γt and cross γ× components that can be calculated by:

γt = −ℜ [γp] = − [γ1 cos(2ϕ) + γ2 sin(2ϕ)] (3.30)
γ× = −ℑ [γp] = − [γ1 cos(2ϕ)− γ2 sin(2ϕ)] (3.31)

Alinhamento Tangencial Alinhamento CruzadoTangential alignment Cross alignment

Figure 3.4: Considering a spherical
symmetry, we can write the ellipticity of
an obje as a sum of a tangential component
and a cross component. ource: irian
astejonolina

e negative sign in the above equation can be understood
as follows: consider a circular mass distribution and a point on
the θ1 axis outside the Einstein radius. e image of a circular
source will be mapped into a stretched image along the θ2 axis.
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In this case, ϕ = 0, the shear is real and negative and in order to
have tangential shear positive, and thus to define the tangential
component according to intuitive understanding, this minus sign
is introduced. Owing to the spherical symmetry, we expe only
the tangential projeion of γt effes from gravitational lensing,
whereas γ× can be used to investigate possible systematic effes.

Now, using that

γ(θ) = κ̄(< θ)− κ(θ) , (3.32)

we can rewrite this equation as a more convenient form:

Σcrγt(θ) = Σ̄(< θ)− Σ(θ) , (3.33)

which will suit better to praical cases when we combine
clusters into stacked halos, because since each lens-source pair zd
and zs is well determined, we can use the left hand side of the
equation (in the limit that γ ∼ g) as data and treat the right hand
side as model.

Effeively, we will have many sources for gravitational signals: a
source point contribution due to baryonic mass concentration of
the central galaxy, the halo profile, effes due to the miscentering
of the profile, and a contribution from the large scale struure of
the universe. e proper treatment for each of these effes will
be discussed in detail in the chapter 4, but all of them will always
be modelled into a surface distribution Σ and into effe by the
equation above (3.33).





Part II

Application





4

ethodology

W      implementation
of our acquired knowledge of galaxy systems and gravitational
lensing - specifically on the aspe of dominance of the central
galaxy with respe to the other galaxies in the central region.
e main goal of this work is look for correlations between the
magnitude gap and other physical observables of galaxy systems
available with our data, described below: the system mass, NFW
concentration parameter, luminosities, and mass-to-light ratios.

In order to measure the mass distribution of the systems,
we employ weak gravitational lensing shear measurements, as
discussed in the seion arametricodelling of chapter 3.
e effe of weak gravitational lensing is, however, subtle and
dominated by the noise of intrinsic ellipticities. In fa, the typical
intrinsic ellipticity of galaxy images is of order ϵ ∼ 0.3. To achieve
a useful measurement of γ on the scales we need then, that of
one magnitude lower or less, we must achieve a high number
of galaxies per image area to use as background sources, and
average their tangential ellipticities in radial bins to estimate the
distribution of the shear, raising our signal above the noise from
intrinsic ellipticity dispersion.

It has been shown [Bartelmann and Schneider, 2001, van
Waerbeke, 2000] that the noise of weak lensing measurements
scales as the inverse of

√
N , with N representing the number of

galaxies with measured ellipticities:

σ2ϵ ∝
⟨ϵs(ϵs)∗⟩

N
. (4.1)

On the other hand, the observables we want to correlate to
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probe aspes of the history of mass assembly of clusters and
groups are also subje to large intrinsic scatters. To improve our
situation in both fronts we can add signal from different systems
to calculate average properties that are relevant to particular
populations, which may lower the average signal per cluster but
can also remove biases due to the triaxiality of clusters relative to
the line of sight, and contamination by the large scale struure.

e approach taken by this work to cope with these recurrent
SNR in lensing studies is to combine subsets of galaxy systems
into modelled halos, to increase the number of galaxies used
as source, and average out effes of projeion, alignments
and intrinsic scatters. is method is usually called stacking or
cross-correlation lensing [Johnston et al., 2007], and this chapter
describes both the data used, and the steps to be taken in both
preparing and applying this method into the necessary details.

e results of any preliminary calculations will be displayed
along this chapter, whereas the main results for the measured
shear, masses, mass concentrations and M/L ratios will be left
to the chapter 5 since they constitute the main objeive of this
work.

4.1 ata

e data used in this work comes primarily from two different
surveys: the SDSS DR8 redMaPPer catalogue of galaxy clusters
by Rykoff et al. [2014] and the CFHT Stripe-82 survey [Moraes
et al., 2014]. e Stripe-82 is an equatorial region about 2◦ wide
in the latitude direion between −40◦ < RA < 60◦ which
has been extensively investigated by not only SDSS, providing
speroscopy, but also several other surveys, such as Viero et al.
[2014], LaMassa et al. [2013], Durret et al. [2014]. e cs82
was specifically designed to take profit of the synergies in this
abundance of data.

e main goal of the cs82 collaboration was to measure cosmic
shear,a large scale struure effe of gravitational lensing that can
be used to map the distribution of matter in the universe, and as
described in the last seion of chapter 1, constrain cosmological
parameters. Together with the cluster catalogue provided by
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1 FITCLASS is a star/galaxy identification
parameter where 0 corresponds to galaxies
and 1 corresponds to stars.

redMaPPer, it can also be used to study a large number of galaxy
systems at once.

Figure 4.1: e galaxies in the centre of
this optical image are an example of galaxy
cluster as imaged by SDSS, displaying
the charaeristic yellowish hue of elliptic
galaxies. ource: SDSS /lexie eauthaud
CS82 presentation

e cs82 by itself consists of 173 images in the CFHT y′ (∼
SDSS i) band, with the MegaCam instrument a 1deg2 field of
view camera with 21, 000× 21, 000 pixels, resulting in an angular
scale of 0.187arcsec/pixel. e completeness magnitude limit
achieved was mi < 24, with a median seeing of ∼ 0.6′′. e
total effeive area after masking and de-overlapping the images
corresponds to about 124 deg2 of the sky. e classification and
measurements of shapes of objes has been done by the LensFit
algorithm [Miller et al., 2007, Kitching et al., 2008, Miller et al.,
2013], and the details of the calibration and its systematics are
discussed in Erben et al. [2013]. In this work, all objes with
magnitudes iAB < 23.5, w > 0 and FITCLASS = 01 are used.
is magnitude is defined as a safe limit to guarantee homogeneity
for all the 173 tiles. Together, this criteria results in a total of
4, 450, 478 galaxies, and the average galaxy density per image area
is ∼ 10gal/arcmin2.

e photometric redshifts for the galaxies to be used in weak
lensing analysis cannot be taken from the cs82 direly, as it
consists of a single band survey, but were then taken from
crossing data tables from other surveys: Reis et al. [2012], and
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Figure 4.2: Distribution of ellipticities in the
x, y coordinate frame of the CS82 survey,
as determined by LensFit. e dashed line is
the average in both ellipticity direions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ellipticities

0

2000

4000

6000

8000

10000

12000

co
u
n
ts

〈
|ε1 |
〉〈

|ε2 |
〉

|ε1 |
|ε2 |

one provided by the cs82 based on Brammer et al. [2008].
e red-sequence Matched-filter Probabilistic Percolation

(redMaPPer) algorithm for cluster finding, on the other hand,
is a photometric cluster finding algorithm based on the optimised
richness estimator λ of Rykoff et al. [2012], which is designed
to have minimum scatter with cluster masses. e redMaPPer
algorithm, a descendant of the maxBCG algorithm[Koester
et al., 2007], identifies galaxy clusters as overdensities of red-
sequence galaxies around central galaxy candidates. At first, it uses
learning techniques on speroscopic training sets to charaerise
the evolution of the red sequence as a funion of redshift. e
algorithm then uses the resulting red sequence model, together
with a radial scale filter and a luminosity funion filter based on
the Schechter funion (eq. 2.28) to estimate the probability that
any given galaxy belongs to any given cluster. e cluster richness
is defined as the sum of the probabilities of galaxies considered, as
the expeed value of the number of galaxies in the cluster,

λ :=
∑
i

pi . (4.2)

In addition, by identifying a red-sequence for each cluster, it can
estimate cluster photometric redshifts by simultaneous fitting all
possible member galaxies to its red-sequence model. e radial
scale filter also defines a percolation radius rc that is related to the
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obtained richness λ by

rc = 1Mpc ×
(
λ

100

)β

, (4.3)

with β = 0.2 [Rykoff et al., 2014, 2012].

Figure 4.3: Probability mass funion for
all galaxies identified by redMaPPer as
possible members of a system, by radius.
We can see that outer radii galaxies have a
wider distribution. In the left panel, point
transparency was adjusted to refle galaxy
brightness, so that fainter galaxies appear as
faint points (in log scale). On the right, the
blue/red points indicate lower/higher cluster
redshifts respeively. At high redshifts,
probabilities tend to be lower.

Although the authors emphasise that the rc is not direly
related to the virial radius, we use it to define the central region
of the system as r < rc/2, which translates into about ∼ r200/3
[Rykoff et al., 2012]. is is a more inclusive definition, since it
defines less volume to draw nearby galaxies to compute magnitude
differences, however that smaller region will also diminish
significantly the population with ∆M > 0, where the central
galaxy is not the brightest (cf. Fig. 4.4).

4.2 bsoluteagnitude alculations
To describe our whole procedure carefully, we start at the very first
first step: to calculate absolute magnitudes for each galaxy from
the redMaPPer catalogue. Since the redMaPPer galaxy magnitude
data were already de-reddened, we can calculate the absolute
magnitudes through the Distance Modulus µ as a funion of the
luminosity distance (eq 1.25):

µ = 5 log
(
DL

10pc

)
= mi −Mi − ki , (4.4)

where the K-correion, given by O'Mill et al. [2011] for the
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2 which results in

dki
dg

= 0.538z − 0.027

dki
dr

= −0.538z + 0.027

dki
dz

= 0.538(g − r)− 0.075

3 ese will lead to negative gaps for usual
cases, where the central galaxy is the
brightest, and positive for those which it
is not.
4 As previously stated, we restri our
calculation of magnitude gaps to the inner
region of the group/cluster as defined by a
circle with r < 1/2Rc, the effe of the
inner region defining radius is discussed at
the end of this seion.

band i filter magnitude, using the other filters g, r, and the
redshift z is:

ki = [0.538(g − r)− 0.075] z + [−0.027(g − r)− 0.120] ,
(4.5)

To estimate the uncertainties, we follow simple uncertainty
propagation 2

δ2ki =

(
δg

dki
dg

)2

+

(
δr

dki
dr

)2

+

(
δz

dki
dz

)2

(4.6)

e uncertainty of the distance modulus is likewise given by:

δµ = δz
dµ
dz

For which we use a numerical derivative process to calculate dµ
dz .

Finally, with

δ2Mi
= δ2µ + δ2ki ,

the absolute magnitude results are ready.

4.3 stimation ofagnitude aps
In possession of the absolute magnitudes, we turn to the
estimation of the magnitude gaps. Here, we must start by
two important remarks that will shape this discusion: first the
redMaPPer algorithm does not always identify the central galaxy
as the brightest. Hence, we refer to the central galaxy as CG,
instead to the literature usual BCG, and the magnitude gaps
are calculated with respe to the brightest non-centre galaxy
(∆M1−2 := MCG −MBNCG) or the third brightest non-centre
galaxy (∆M1−4 := MCG −M3BNCG)3, depending of the adopted
seleion criterion. 4

Secondly, the probabilistic nature of the redMaPPer catalogue
puts an obstacle to our dire assessment of the cluster magnitude
gap: since we do not know with certainty which galaxies are and
which are not system members, we cannot direly calculate the
magnitude gap by just subtraing the central and BNCG and
3BNCG absolute magnitudes, subje only to instrumental error.
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5 In praice, the bootstrapping method
helped us check the validity of the
calculations both to the expeed values
and the variances.

We can, however, calculate expeed values of magnitude gaps,
by simply computing the the probability mass distribution of the
galaxy catalogue of each system. To do so, we have employed two
different methods: first, a computational bootstrapping, creating
copies of each cluster that reproduced cluster probability mass
funion, and second, the dire calculation of probabilities for
possible magnitude gap values.

To calculate these expeed values computationally, we can, for
each cluster, create a number of realisations to obtain the expeed
magnitude differences. We then order galaxies in each copy by
increasing magnitude, and sele the first and third as the BNCG
and 3BNCG for each copy. e expeed value of the magnitude
gap is given by the weighted average of the n realisations.

E(∆M1−2(4)) =

∑
n

[
MCG −M(3)BNCG,n

]
wn∑

nwn
, (4.7)

where the weights are given by

wn =
1

(δ∆Mn)2
, (4.8)

and the uncertainty due to uncertainties in magnitude
measurements is

⟨δ∆M⟩ = 1√∑
iwi

. (4.9)

with δ∆Mi =
√
δM 2

cg + δM 2
gal.

e error due to the uncertainty of memberships , likewise, can
be estimated by calculating the weighted standard deviation of the
mean of the n realisations.

We have calculated ∆M1−2(4) and the respeive probability
distributions through the bootstrap method by using 2000
realisations, after checking for convergence by inspeing the
successive results as a funion of n. However, this Monte Carlo
approach has proven to be excessively time-consuming and
because of that not easily adaptable. While looking for a faster
way to calculate these values we have derived exa probability
calculations which can be used to obtain the expeed values.5

First, consider a table of all galaxies inside the inner region
of the system except the central, with N redMaPPer-identified
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Figure 4.4: Distributions for the calculated
magnitude gaps and errors for ∆M1−2 and
∆M1−4.

possible members, so that their membership probabilities are
given by p⃗ = p1, p2, p3... as ordered by decreasing brightness
(increasing absolute magnitude). en, the probability of the
first galaxy to be the brightest in this group is just p1 as no other
galaxy can possibly be brighter than it, So that p1 = P1 is also the
probability of the magnitude gap ∆M1−2 to be MCG −M1. Now,
for the second galaxy we need to ensure that the first is not present
(1 − p1) and that the second is, that is, (1 − p1)p2. By simple
iteration, the probability of the n-th galaxy of being the BNCG is
given by:

Pn = pn

n−1∏
i=2

(1− pi) . (4.10)

Now, for ∆M1−4, the reasoning is just slightly more
complicated. e first possible galaxy to be counted is the one
with probability p3; for it to be the third brightest in this set,
all before must be galaxies of the system and also itself, so the
probability is P3 = p1p2p3. e fourth galaxy will be the third
brightest with the remaining probability (1 − P3) and its own
probability of being a member p4, that is P4 = (1 − P3)p4
. e fifth will follow suit: the remaining probability is now
(1− P3 − P4) and its own p5. So the general formula will be

Pn = pn

(
1−

n∑
i=3

Pi

)
. (4.11)

Colleing these results the expeed values are the sum
weighted by individual probabilities for each possible gap:

E
[
∆M1,2(4)

]
=MCG −

N∑
n=1(3)

PnMn , (4.12)

and the errors adopted follow direly from the definition of the
variance also,

Var
[
∆M1,2(4)

]
= E

[(
∆M1,2(4)

)2]−[E (∆M1,2(4)

)]2
. (4.13)

ese calculations were successfully compared to the
bootstrapping approach, and resulted in total fraions of
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∼ 1.6(2.4)% clusters as optical fossil candidates according to
∆M1−2(4) (Fig. 4.4)).On the other hand, 7.3(0.13)% of the
systems had positive ∆M1−2(4) values, that raises the question
on whether these systems have been incorrely centred by the
algorithm or if these brighter non-CG galaxies were incorrely
classified as highly probable cluster members.
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Figure 4.5: Fraions of clusters by particular
magnitude gaps. Positive magnitude gaps
generally increase with radius, whereas for
the fossil fraion increases with smaller radii,
which justifies calling smaller radius a less
stri definition.

To assess the effe of the definition of the inner radius, we
have calculated the fraion of the clusters classified as fossils with
both ∆M1−2 and ∆M1−4 criteria, and the calculated fraions by
Dariush et al. [2010] both from observations and simulations and
the the fraion of clusters with a positive magnitude gap, which
may include systems where the CG was misidentified. Because of
this, we opt to not use the positive gap clusters in further analysis
of this work.

4.4 arametricodelling ofass
istributions

e NFW profile (eq. 2.6) can be written as a funion of two
parameters, the concentration cN and the mass Mc for a given
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redshift z by first rewriting it into

ρNFW (r) =
δNFW ρcrit(z)

(r/rs)(1 + r/rs)2
, (4.14)

where we recall that the critical density of the universe at a
certain redshift is given by ρcrit = 3H2(z)

8πG , and we have defined
the scale radius as rs = rc/cN .

en, the δNFW parameter can be related to the cluster
overdensity ∆c and the concentration by:

δNFW =
∆c

3

c3N
ln(1 + cN)− cN/(1 + cN)

, (4.15)

and finally the scale radius is given by proxy, as the collapsed
radius as a funion of the mass and redshift by

rc(z,Mc) =

[
3Mc

4π∆c ρcrit(z)

] 1
3

. (4.16)

For this work, the usual ∆c = 200 has been used to
facilitate comparison to the existing literature and the masses
and concentrations so defined are referred to as M200 and c200,
respeively.

e projeed mass density will be given by 2.34, for which
the NFW profile yields analytic solutions [Wright and Brainerd,
2000]. For a given collapsed mass , concentration, and redshift,
we have

ΣNFW (r|Mc, cN , z) = 2rs δNFW M200 ΣX,NFW (r/rs) (4.17)

where the shape of the profile ΣX,NFW in terms of the rescaled
dimensionless radius is given by

ΣX,NFW (x) =



1
(x2−1)

[
1− 2√

1−x2
arctanh

√
1−x
1+x

]
(x < 1)

1
3 (x = 1)

1
(x2−1)

[
1− 2√

x2−1
arctan

√
x−1
1+x

]
(x > 1)

(4.18)
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4.5 e Effe ofiscentering
When using parametric profiles to model a combination of
spherically symmetric matter distributions, it is important to
evaluate the corre centre position of the profiles. It is known
that some fraion of the CGs may be offset from the true centre
of the gravitational potential it inhabits [Girardi et al., 1997,
Krempec-Krygier and Krygier, 1999], and also that cluster finder
algorithms may identify a wrong galaxy as the CG [Johnston
et al., 2007]. When we combine several clusters, the effe of
this miscentering is to produce lower levels of shear in the inner
radii, as some centres will be at a radius R > 0, and their shear
maps will shuffle the ensemble average, which may bias the results
towards lower masses [Johnston et al., 2007].

If the 2D offset in the lens plane of a single profile is given by
Roff , the azimuthally averaged surface profile will be given by
a shift of the centre and an integral around the corre centre as
[Yang et al., 2006]:

Σoff(R|Roff) =
1

2π

∫ 2π

0

dθ Σ
(√

R2 +R2
off − 2RRoffcos(θ)

)
.

(4.19)
ere will be, however, a distribution of profile offsets when

combined int cross-correlation lensing. e distribution of these
offsets have been analysed by Johnston and can be modelled as

P (Roff) =
Roff

σ2off
exp

[
−1

2

(
Roff

σoff

)2
]
, (4.20)

where the parameter σoff is the peak of the distribution.
e resulting mean surface mass profile for miscentered

combinations of clusters can be written then as

Σs(R) =

∫ ∞

0

dRoffP (Roff)Σ
off(R|Roff) . (4.21)

Since this work will deal with likelihood fits of this profile
using MCMC - which calculates many candidates for model
parameters and compares to the data, it is worthy to spend some



92         

time considering the computational cost of calculating the model
for a set of parameters into some radial bins, since the model will
be calculated over and over many times.

e expression above, when combined with the differential
surface mass density ∆Σ contains a triple integral

∆Σ(R|M, cN , z) =

1

πR2

∫ R

0

∫ ∞

0

∫ 2π

0

rdr dRoff dθ P (Roff)Σ
(√

r2 + r2off − 2r roffcos(θ)
)

−
∫ ∞

0

∫ 2π

0

dRoff dθ P (Roff)Σ
(√

r2 + r2off − 2r roffcos(θ)
)
, (4.22)

which has to be calculated for each point on the parameter
space that the MCMC evaluates times the number of radial bins,
so it can interesting to transform this into a look-up table to speed
up calculations. is can be done by using the previously defined
rescaled radius x = r/rs to define the rescaled off-centring
parameter as ξoff = σoff/rs. We can then write

PX(xoff) =
xoff
ξ2off

exp

[
−1

2

(
xoff
ξoff

)2
]
, (4.23)

and with this and ΣX , as, for example, defined in equation 4.18
we arrive at

∆Σ(R|M, cN , z) =

2rsδNFWMc

πR2

∫ x

0

∫ ∞

0

∫ 2π

0

xdx dxoff dθ PX(xoff)ΣX

(√
x2 + x2off − 2xxoffcos(θ)

)
−
∫ ∞

0

∫ 2π

0

dxoff dθ PX(xoff)ΣX

(√
x2 + x2off − 2xxoffcos(θ)

)
, (4.24)

where the integrals can be pre-calculated as a funion of x,
saved and used through interpolation by  [Cline, 1974]
or other high-performance interpolation library.
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4.6 ontributions from the arge-cale
truure

As previously argued, the NFW profile is expeed to be a good
representation of halo profiles only to a certain scale, at most
∼ 2Mpc/h. To go to further out radii, the contribution of the
large scale struure must to the mass profile be accounted for. We
have already derived the 2-halo contribution as a funion of the
linear bias and the matter-matter two-point correlation funion
(eq. 2.24). Now we proceed to transform the radial matter density
enhancement into a projeed quantity, following the steps of
Johnston et al. [2007].

First, the two halo mass profile term can be written as

ρ2h = b(ν)

ρ̄m(z)︷ ︸︸ ︷
Ωmρc,0(1 + z)3 ξL(r, z) . (4.25)

e matter-matter correlation funion at redshift z can be
written in terms of the growth funion (eq. 1.31) , σ8 (eq. 2.8)
and ξmm at redshift z = 0 as

ξL(r, z) = D(z)2 σ28 ξl [(1 + z)r] , (4.26)

where ξl(r) is the correlation funion at redshift zero, that we
calculate from the linear power sperum as in eq. 1.40.

Now, to calculate the projeed density, if we define

B(z,M) := b(z,M) ΩM σ28D(z)2 , (4.27)

we can write the projeed 2-halo term as

Σ2h(R) = B(z,M)Σl(R) , (4.28)

where the projeed mass profile due to the large scale struure
is calculated as in the equation 2.34

Σl = (1 + z)2ρc,0W ((1 + z)R) , (4.29)

with

W (R) :=

∫ ∞

−∞
dyξl(

√
y2 +R2) . (4.30)
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Figure 4.6: Upper: CAMB generated
power sperum at redshift zero used for
this work, using Planck 2015 data. Lower:
e respeive matter-matter correlation
funion, zoomed into the charaeristic
acoustic oscillation peak.

Again, it has proven useful to pre-calculate the funion W (R)
to avoid repeating the integral when using the fitting procedure.

e source of our power sperum for calculating the
contributions from the large scale struure is CAMB, using the
parameters given in table 1.1 by the Planck 2015 column.

4.7 e ullodel
It is argued [Gavazzi et al., 2007] that the baryonic mass of
the central galaxy is not accounted for in the dark-matter halo.
Although the contribution could be modelled in a number
of ways, e.g. by using a de Vaucouleurs profile, its effes are
only significant on very small scales, which cannot be properly
constrained in weak-lensing only studies. erefore, we have
chosen to test a model the central mass as in Johnston et al.
[2007] and Shan et al. [2015], as a point mass, with lensing signal

∆ΣCG(R) =
M0

πR2
. (4.31)

Colleing this together with those for the correly centred
profile, the miscentered profile and the contribution from
the large scale struure, the surface mass density ∆Σ(R) =
Σcritγ(R) = Σ̄(r < R) − Σ(R) in a modelled halo of
stacked systems with NFW profiles is given by the sum of their
contributions:

∆Σ =
M0

πR2
+pcc∆ΣNFW (R)+(1−pcc)∆Σoff

NFW (R)+∆Σ2ht(R) ,

(4.32)
where the terms in the sum can be enumerated as:

• e baryonic component of central galaxy mass

• e NFW profile for the fraion of clusters correly centred

• e miscentered NFW profile

• e large scale struure contribution.

is is a 5 parameter model, with M0, M200, cN , Pcc, and
σoff as adjustable parameters, where the last two are normally
considered nuisance parameters and the M0 can be either nuisance
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Figure 4.7: Test of the full model showing
the individual contributions of the
miscentered clusters, the correly centred
ones, the two-halo term, and the baryonic
mass of the central galaxy.

6 for each seleion criterion: ∆M1−2 or
∆M1−2

or used to understand differences in the central galaxy of the
systems.

To exemplify the contributions of each term to the final profile,
we have plotted them for a typical set of clusters of mass Mc =
1014M⊙, cN = 3, with pcc = 0.9, σoff = 0.42/hMpc and
M0 = .5 × 1012M⊙ (Fig. 4.7) and, as validation, the results of
its computational implementation were contrasted to examples in
the literature [Ford et al., 2015, Johnston et al., 2007], yielding
satisfaory results.

4.8 ignaleasurement
As we claimed in the first paragraphs of this chapter, in cross-
correlation lensing analysis, the signal is measured out of many
stacked systems and in order to have more homogeneous
subgroups, we must define suitable groups of systems to stack.
Since the cluster observables may depend on the redshift and the
cluster mass profile is strongly correlated with richness, these are
the two quantities that must be taken into account first. en,
we further subdivide these groups into final stacks based on
magnitude gaps as we want to correlate populations of different
gaps with the other observables we have access to.

We have, then, divided the full 1502 cluster sample into a total
of 18 categories6, with 3 redshift divisions, ([0.15, 0.4], [0.4, 0.6],
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Table 4.1: Number of systems in each stack
by ∆M1−2.

∆M1−2 .15 < z < 0.4 .4 < z < .6 .6 < z < .75

λ > 30 < −1.5 7 12 7
[−1.5, 0.75] 19 37 61
[−0.75, 0] 27 53 74

λ < 30 < −1.5 21 39 231
[−1.5, 0.75] 64 134 181
[−0.75, 0] 85 197 318

Table 4.2: Number of systems in each stack
by ∆M1−4.

∆M1−4 .15 < z < .4 .4 < z < .6 .6 < z < .75

λ > 30 < −2 9 17 8
[−2,−1] 33 59 92
[−1, 0] 13 32 56

λ < 30 < −2 36 455 56
[−2,−1] 109 233 340
[−1, 0] 32 102 191

and [0.6, 0.75]) and two richness divisions(30 < λ < 130 and
15 < λ < 30) and finally, each of these bins are further divided
into 3 magnitude gap classes, taking into account both different
methods previously suggested (∆M1−2(4) can be seen in figure
4.8 & table 4.1(4.2)). Due to the low number of systems when
considering these many subdivisions, we could not separate fossils
from each subgroup, so we relax the requirement to a smaller
magnitude gap to have qualitative comparison of the physical
observables against the size of the gap in general.

• For ∆M1−2 we have divided into ∆M1−2 < −1.5 (High
Delta), −1.5 < ∆M1−2 < 0.75 (Medium Delta), and
−0.75 < ∆M1−2 < 0 (Low Delta).

• For ∆M1−4 we have divided into ∆M1−4 < −2 (High Delta),
−2 < ∆M1−4 < −1 (Medium Delta), and −1 < ∆M1−4 < 0
(Low Delta).

Having separated the stacks of objes, the weak lensing shear
signal can been measured by averaging the tangential ellipticity in
concentric rings around cluster centres. e averaged tangential
ellipticities, however, do not trace the shear direly, but aually
the reduced shear, as we have previously discussed (eq. 3.22). So,
if eij is the ellipticity of the i-th galaxy around the j-th cluster,
as shown by Mandelbaum [2006], a proper estimator for ∆Σ
calculated from the weighted average of ellipticities and identical
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halos has a second order contribution

∆̂Σ = ∆Σ+∆Σ Σ Lz (4.33)

with

Lz =
⟨Σ−3

crit⟩
⟨Σ−2

crit⟩
(4.34)

however, as argued by [Ford et al., 2015] the effe of the
second term is only barely noticeable, and only of ∼ 10%, in the
innermost radii, because the weak lensing regime starts to break
down and then the approximation g ≈ γ is no longer valid. As
we do not have, in our data, enough signal to discriminate to that
level, specially in the inner regions, we have chosen to estimate
the signal from the data following a simpler model as Shan et al.
[2015]:

∆̂Σ =

∑
l,swl,setΣcrit;l,s∑

l,swl,s
. (4.35)
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7 Attention must be given to units. Since the
angular distances will be given in Mpc and
we want the result in solar masses, we use
G = 4.302× 10−9M−1

⊙ (km/s)2Mpc and
c = 3× 105km/s.

8 As suggested by a member of the
collaboration in private communication.

with weights given by wl,s = wsΣcrit;l,s
7where ws is a Lensfit

weight due to intrinsic and measurement quality scatter.
e procedure now is to first set apart a region of 10Mpc/h

around each cluster from which we draw background objes,
defined by having a redshift zs > 1.1zd + 0.158, then to calculate
Σcrit for each pair galaxy-background source. e ellipticities
for each source are then transformed from the e1 = Dec,
e2 = −RA coordinate system into polar coordinates around the
cluster centre, which gives us tangential and cross ellipticities of
the sources.

We now have ϵtΣcrit for each lens-source pair, and proceed
to stack them combined into 6 logarithmically spaced annuli
determined in physical radii. We have chosen the number
of radial bins to be 6 by testing many configurations -
most of the problems encountered while trying more radial
bins is due to difficulty in innermost radii. e annuli
that have been defined are those between the limits ∼
[0.11, 0.23, 0.48, 1.00, 2.09, 4.36, 9.12] h−1 Mpc.

Each of these radial bins have its ∆̂Σ measured by eq. 4.35,
which count as a single data point for the stack at the bin centre.
e resulting galaxy densities show some decrease with radius,
which could denote contamination at inner radii, or border
effes. e effe of contamination by cluster or foreground
galaxies as background should diminish the signal, as they are not
affeed by lensing by stack members. We have, however, tested
deeper cuts, such as zs > 1.1zd + 0.25, all of which resulted only
in weaker statistics.

We have also measured the ∆̂Σ× cross terms concomitantly to
check for systematic errors, alignments and miscentering effes,
as cross ellipticities are not expeed from radial mass distributions
[Schneider, 2006].

4.9 onte arloarkov hain itting of
the ignal

After obtaining the data signal, as described above, we have
turned to investigating the probability distribution of the model
parameters that describe the data for each of the 36 stacks.
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9 Modern high-level programming languages,
such as  3 normally provide infinite
constants that can be used safely.

10 Johnston et al. [2007] justifies the value
for σoff by simulations, taking into account
misidentification of central galaxies by the
maxBCG algorithm. Whether the same
number is applicable to redMaPPer, a dire
descendant of maxBCG, is questionable, but
is not expeed to largely differ in praice.

Generally, the posterior probability distribution of the
parameters is proportional to the likelihood and the prior as

P (Θ|∆Σ) ∝ L(∆̂Σ|Θ; z̄)× P (Θ) , (4.36)

where Θ =M200, c200, pcc, σoff ,M0 are the parameters.
e parameters Mc, cN , M0,σoff , and pcc have been modelled

to have multivariate Gaussian likelihoods for a given average
redshift of the ensemble z̄. It is computationally praical to use
the logarithm of the likelihood (log-likelihood ), which is given by

ln [LNFW (Mc, cN , z̄)] = −1

2

∑
i

[
∆̂Σ(Ri)−∆Σs

NFW (Ri|Mc, cN , z̄)
]2

σ2
∆̂Σi

. (4.37)

To that we must add the logarithm of funions defining our
priors. We have used flat, or uninformative, priors to constrain
the space of parameters into acceptable values, which are given
in table 4.3. e choice of flat priors, which differs from current
praice on the literature [Johnston et al., 2007], was taken not
only for simplicity, but also to investigate both the model and
the data - in chapter 6, we discuss the future application of more
restriive priors.

ese flat priors can be, in praice, implemented as funions
that return zero inside the permissible interval and −∞9 outside,
constraining the likelihood into these regions.

e logarithm of the posterior probability is then given by

ln [P (Θ|∆Σ)] = ln
[
LNFW (∆̂Σ|Θ; z̄)

]
+ ln [P (Θ)] , (4.38)

which can then be probed by Monte Carlo methods. We use
as parameters for the masses logM0 and logMc, in praice, as
they can span over more than two orders of magnitude, and this
prevents some possible computational problems.

To minimise the effe of preconceptions, and to test these
models in preparation for future surveys, we have employed three
different models to fit the signal by defining the number of free
parameters: one full model, leaving all the previously described
5 parameters free, one with σoff = 0.42hMpc, taken from
Johnston et al. [2007]10, and the one with both σoff as before and
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no baryonic mass of the central galaxy (M0 = 0). Despite using
several different models we will not, at this time, present model
comparisons using full Bayesian evidences.

Finally, we note that these choices result in a total of 108 fits,
but only modestly foreshadow future computational demands,
where surveys will probe hundred thousands of clusters (e.g.
Benítez et al. [2015]).

Table 4.3: Priors used with the MCMC.
When absent, the method is equivalent to a
δD prior on the exa value.

Parameter Range
log(Mc) [10, 16]

log(M0) [10, 14]

cN [0.1, 20]

pcc [0, 1]

σoff [0.1, 0.9]

To probe the posterior probability distributions of the
parameters, we have employed  [Foreman-Mackey et al.,
2013], which is a python implementation of Goodman and Weare
[2010]'s Affine Invariant Markov chain Monte Carlo ensemble
sampler. It defines a set of walkers that build Markov chains while
updating the proposal distribution depending on results from
each other. By doing so, the algorithm can be easily parallelised
to improve performance and map the posterior likelihood with
lesser steps.

e walkers have been initialised by random choice inside balls
around "fiducial" values for each of the parameters e choice
of these values, however, do not compromise the method if we
use large enough chains. ese initial "fiducial" values were:
logM200 = 14, c200 = 3, pcc = .7, σoff = .4, and
logM0 = 11, where the parameters were free, with balls defined
as 10% of each value. We have used 256 walkers with 1000 steps,
for a total of 256000 chain links in the parameter space for each
fit. Using a Xeon processor with 12 cores and 32 GiB of RAM,
each fit was performed in around 1800 seconds. is highlights
the computational cost for future uses, even though there still is
plenty of room for improvement in the code.

In order to define a region from the chain from which we draw
the mapped likelihood sample, we must define a burn-in in the
initial seion of the chains, to get rid of any influence of the
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choice of starting positions of the walkers. We have chosen to
discard an overly conservative first 20% of the chains as burn-in,
which was determined to be enough by inspeing the chains.

4.10 uminosities
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Figure 4.9: e difference between the
redMaPPer calculated i-band luminosity and
the ones calculated by our absolute i band
magnitudes. e difference occurs because
of different luminosity distances owing to
different cosmological parameters. is
comparison has been used to corre for full
cluster luminosities.

Finally, we have attempted to use the luminosity information
from the redMaPPer catalogue to add tests we could do to our
data. However, measuring precise luminosities is a difficult task,
because estimates will strongly depend on distance measures,
which are dependent of cosmology. As a highlight of this, the
luminosities used in this work, which come from the redMaPPer
catalogue, have been compared to luminosities calculated by the
absolute magnitudes by

L = 10−0.4(Mb−Mb,⊙)L⊙ . (4.39)

using table 1.1, in the concordance column, for the
cosmological parameters. It was found that they differ on a small
multiplicative faor, for which different distance scales can be an
explanation (Fig. 4.9). Consequently, the luminosities used in this
work, as their derived quantities are to be used only in comparison
between different stacks in this work, and not outside this scope.





1 Either ∆M1−2 or ∆M14

5

esults and iscussions

T       are
presented below, first the measurements of the radial averaged
ellipticity profiles (∆Σ) and then the parameter posterior
distribution estimation through MCMC. ese results are divided
first by magnitude gap determination method1 and then into the
redshift and richness bins as described in tables 4.1 & 4.2. We
have kept the pattern of these tables using in both future tables
and figures below the same placement: higher(lower) cells depi
higher(lower) richness ensembles and from left to right, increasing
redshift bins. As in figure 4.8, we have kept the colour code of
larger magnitude gaps as red, medium magnitude gaps as green
and small magnitude gaps as blue. After presenting the main
parametric results, we discuss the investigation of relationships
between obtained parameter distributions.

5.1 easurements
We have measured ∆Σ in the 6 previously described physical
radial bins, ranging from the inner part of clusters in ∼ 100kpc
to their vicinity, as far as∼ 10Mpc. e results are displayed
in Figure 5.1 upper and lower panels for ∆M1−2 and ∆M1−4

respeively. From these plots, we see that not all radial shear
measurements scale as the general shape of halo radial profiles
we have described in the seion seion e role of osmology
in alaxy systems of chapter 2, with a steepening slope from the
centre to the outer radii. Instead, some radial profiles display
drops or steep hikes in the inner radii as we see in some of the
plots, specially those with high redshift systems.
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2 as explained in chapter 4, we discard an
initial fraion of the Markov chain as "burn-
in" to delete any effes of the choice of
initial position of the walkers

Preliminary tests have suggested that this may happen due to
three different faors: first, the lower number of background
source galaxies in the inner radii, leading to worse statistics,
even though they are expeed to have greater signal [Schneider,
2006], chance alignments of some systems, from which effes
may not cancel out sufficiently for the number of clusters used in
the poorer stacks, and large miscentered fraions of the systems
belonging to a stack.

e cross ellipticity components have been also measured to
search for systematic errors and yielded satisfaory results, being
compatible with zero in most cases. In case which it deviated from
zero, always less than two sigma, it did not display any particular
bias, what could be indicative of relevant systematic errors in the
method [Schneider, 2006, Bartelmann and Schneider, 2001].

5.2 arameter stimation

We have performed the aforementioned MCMC exploration of
the posterior distribution of the parameter space for the total of
36 (3 redshift, 2 richness bins, divided in three magnitude gap
groups by ∆M1−2 or by ∆M1−4 ) stacks in 3 different models
(a total of 108 fits), as described in chapter 4, with 5, 4 and 3
parameters. is results in a large colleion of data with a total
of 432 multidimensional posteriors, each of them represented by
a Markov chain with 204800 links, as a result of using the 256
walkers in 1000 steps and discarding the first 20% as burn-in2.

We have calculated medians and the 16th and 84th percentiles
level to represent best fit candidates and regions of 68%
confidence, respeively, which represent more robust statistics
than maximum likelihood estimators. ese numbers and the
averages for the redMaPPer catalogue-derived parameters (mean
redshift, mean richness, mean luminosity for each stack) are
displayed in full on the tables in the end of this seion (Tables
5.1 & 5.2).

As there were no qualitative differences between the stacks as
divided by ∆M1−2 or ∆M1−4 a priori, we will focus on ∆M1−2

in the next seion to discuss the significance of our results. We
also concentrate on the first two redshift bins, which results in
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Figure 5.1: Results for the tangential shear
in logarithmically spaced radial bins for the
∆M1−2(4) defined stacks. From left to
right, increasing redshift bins and from up
to down, decreasing redMaPPer richness λ
bins. e small lower panel in each of the 6
groups is the results for the cross shear.e 6
upper panels are ∆M1−2, and the 6 lower
∆M1−4
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3 In fa, they become outliers when put
together in the comparisons

discarding most of the systems, but as their background source
counts are low, they result in less defined posteriors.3

Observing the distribution for masses and concentrations, more
constrained models result in slightly better defined parameters,
with narrower 68%CL regions. is is to be expeed, as the
information content of the data is divided between adjusted
parameters.
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Figure 5.2: Example of a triangle plot for the
5 parameter model for the low redshift, low
richness, middle magnitude gap stack. e
whole result gallery with triangle plots and
fit results as below for each of the fits will be
made available online, together with the code
as mentioned before.

To illustrate the results of the results of the fitting procedure, we
display as an example of a so called triangle plot, that combines all
2D histograms of pairs of parameters for a single fit to represent
the full multidimensional posterior distribution. We have chosen
to display for that the low-richness, low-redshift, ∆M1−2 defined,
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high magnitude gap bin in figure (Fig. 5.2 ). Some charaeristics
of the model that these plots suggest in general are that taking
lower fraions of correly centred clusters, the median inferred
mass is higher, what illustrates an example of the degeneracies
present in the model, and that choosing higher masses will result
in higher concentrations.
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5−Parameter NFW fit for n=63 low richness,∆M1−2<0.5, systems at mean redshift z̄=0.38
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3−Parameter NFW fit for n=63 low richness,∆M1−2<0.5, systems at mean redshift z̄=0.38
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Figure 5.3: Example fit of the 5-parameter
model into the low redshift, low richness,
small ∆M1−2 stack. e colour curves are
partial contributions to the overall profile,
the black solid line the fitted curve and the
gray curves a random sample of parameters
drawn from their posterior probabilities
distributions

We also present two examples of fits can be seen in the upper
and lower figure 5.3 to understand the contribution of each faor
in the full model (Eq. 4.32).
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λ > 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 16.6
+10.5
−6.5

10.7
+5.0
−3.3

24.2
+11.4
−6.6

c200 8.9
+6.5
−4.0

9.0
+6.4
−3.8

5.7
+5.5
−2.3

ccor200 8.9
+6.5
−4.0

8.6
+6.1
−3.6

5.9
+5.7
−2.4

pcc 0.39
+0.35
−0.23

0.51
+0.32
−0.27

0.23
+0.22
−0.13

σoff 0.42
+0.30
−0.21

0.36
+0.38
−0.20

0.35
+0.19
−0.15

M0 2.9
+26.3
−2.6

2.3
+17.7
−2.0

1.8
+11.5
−1.5

z̄ 0.38 0.25 0.35

λ̄ 36.29 46.80 48.54

L̄ 26.73 34.24 32.24

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.5
+2.2
−0.5

7.2
+4.4
−2.6

8.1
+6.0
−3.2

c200 10.4
+6.5
−6.6

10.6
+6.1
−5.3

8.7
+6.6
−4.4

ccor200 10.4
+6.5
−6.6

13.5
+7.7
−6.8

11.2
+8.6
−5.7

pcc 0.54
+0.32
−0.37

0.59
+0.27
−0.28

0.43
+0.35
−0.23

σoff 0.51
+0.27
−0.28

0.51
+0.26
−0.27

0.51
+0.26
−0.22

M0 61.7
+66.9
−60.2

5.9
+55.5
−5.5

2.9
+26.6
−2.6

z̄ 0.53 0.54 0.59

λ̄ 41.85 41.65 42.53

L̄ 29.70 31.06 30.41

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.6
+5.4
−0.5

0.4
+2.0
−0.4

5.0
+3.9
−2.5

c200 9.2
+7.0
−6.1

11.2
+6.2
−7.0

11.5
+5.9
−5.9

ccor200 9.2
+7.0
−6.1

10.9
+6.0
−6.8

14.0
+7.2
−7.2

pcc 0.45
+0.38
−0.32

0.51
+0.34
−0.35

0.55
+0.30
−0.30

σoff 0.50
+0.27
−0.27

0.50
+0.27
−0.28

0.47
+0.30
−0.28

M0 3.5
+39.9
−3.2

149.8
+50.8
−77.8

7.1
+65.4
−6.7

z̄ 0.72 0.74 0.73

λ̄ 42.92 41.64 44.18

L̄ 34.38 30.74 31.72

λ < 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 3.7
+3.8
−2.0

10.6
+6.2
−3.8

5.7
+4.6
−2.2

c200 9.8
+6.3
−5.1

7.3
+8.1
−3.4

5.1
+6.4
−3.2

ccor200 9.8
+6.3
−5.1

8.0
+8.9
−3.7

5.3
+6.7
−3.3

pcc 0.47
+0.34
−0.29

0.38
+0.38
−0.20

0.56
+0.31
−0.30

σoff 0.45
+0.29
−0.23

0.44
+0.27
−0.19

0.65
+0.18
−0.28

M0 4.3
+34.2
−4.0

1.7
+12.1
−1.4

6.4
+39.6
−6.0

z̄ 0.40 0.38 0.37

λ̄ 19.98 21.24 20.47

L̄ 14.60 15.51 14.80

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 3.1
+3.1
−1.9

1.6
+1.4
−0.8

6.2
+3.2
−2.1

c200 10.2
+6.1
−5.5

10.9
+6.1
−5.8

5.2
+4.9
−2.0

ccor200 10.2
+6.1
−5.5

10.3
+5.7
−5.4

5.5
+5.2
−2.1

pcc 0.51
+0.33
−0.31

0.52
+0.32
−0.32

0.35
+0.35
−0.20

σoff 0.48
+0.28
−0.26

0.42
+0.32
−0.24

0.29
+0.32
−0.13

M0 5.9
+43.6
−5.5

3.3
+22.7
−3.0

1.5
+9.2
−1.2

z̄ 0.50 0.59 0.59

λ̄ 20.80 19.96 19.79

L̄ 16.19 14.40 14.77

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.3
+2.0
−0.3

0.2
+1.2
−0.2

5.6
+4.1
−2.9

c200 8.6
+7.5
−6.6

10.9
+6.1
−6.7

9.2
+7.7
−5.9

ccor200 8.6
+7.5
−6.6

10.7
+6.0
−6.6

12.0
+10.1
−7.7

pcc 0.43
+0.37
−0.31

0.53
+0.32
−0.35

0.19
+0.34
−0.13

σoff 0.53
+0.25
−0.28

0.52
+0.26
−0.27

0.45
+0.29
−0.20

M0 2.5
+18.0
−2.2

85.6
+30.1
−53.1

1.5
+9.8
−1.3

z̄ 0.70 0.71 0.72

λ̄ 20.24 20.21 20.28

L̄ 16.43 15.10 14.52

λ > 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 17.8
+10.5
−7.1

10.1
+4.7
−2.9

28.4
+7.5
−7.9

c200 9.6
+6.2
−4.3

8.8
+6.5
−3.7

7.6
+4.6
−2.8

ccor200 9.6
+6.2
−4.3

8.3
+6.2
−3.5

7.9
+4.8
−2.9

pcc 0.39
+0.34
−0.21

0.60
+0.27
−0.27

0.21
+0.20
−0.10

M0 2.6
+24.2
−2.3

2.1
+16.6
−1.9

1.8
+11.3
−1.5

z̄ 0.38 0.25 0.35

λ̄ 36.29 46.80 48.54

L̄ 26.73 34.24 32.24

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.5
+2.2
−0.5

7.4
+4.5
−2.6

8.6
+5.4
−3.5

c200 10.9
+6.2
−7.0

11.0
+5.8
−5.3

8.7
+6.4
−4.2

ccor200 10.9
+6.2
−7.0

13.9
+7.4
−6.7

11.2
+8.2
−5.4

pcc 0.55
+0.31
−0.36

0.60
+0.27
−0.28

0.40
+0.34
−0.22

M0 63.0
+64.3
−60.8

4.9
+49.6
−4.6

3.7
+30.6
−3.4

z̄ 0.53 0.54 0.59

λ̄ 41.85 41.65 42.53

L̄ 29.70 31.06 30.41

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.8
+6.9
−0.7

0.3
+2.1
−0.3

4.9
+3.6
−2.2

c200 9.3
+7.0
−6.1

11.6
+6.0
−7.3

11.7
+5.8
−6.0

ccor200 9.3
+7.0
−6.1

10.7
+5.5
−6.7

13.9
+6.9
−7.1

pcc 0.43
+0.36
−0.31

0.52
+0.33
−0.34

0.60
+0.27
−0.30

M0 3.5
+38.0
−3.2

153.3
+50.6
−78.4

6.7
+62.4
−6.3

z̄ 0.72 0.74 0.73

λ̄ 42.92 41.64 44.18

L̄ 34.38 30.74 31.72

λ < 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 4.1
+4.1
−2.2

12.1
+5.0
−4.6

4.9
+3.0
−1.7

c200 10.3
+6.0
−5.2

9.0
+7.6
−4.4

4.6
+7.3
−3.0

ccor200 10.3
+6.0
−5.2

10.0
+8.4
−4.9

4.6
+7.4
−3.1

pcc 0.44
+0.35
−0.27

0.32
+0.35
−0.15

0.62
+0.27
−0.32

M0 4.4
+34.3
−4.0

1.8
+12.5
−1.6

7.6
+42.0
−7.1

z̄ 0.40 0.38 0.37

λ̄ 19.98 21.24 20.47

L̄ 14.60 15.51 14.80

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 3.4
+3.4
−1.9

1.5
+1.3
−0.8

6.7
+3.6
−2.5

c200 10.6
+6.1
−5.5

11.5
+5.7
−6.2

6.2
+5.5
−2.7

ccor200 10.6
+6.1
−5.5

10.7
+5.3
−5.7

6.7
+5.9
−2.9

pcc 0.49
+0.32
−0.30

0.58
+0.28
−0.31

0.39
+0.32
−0.20

M0 5.5
+43.0
−5.1

3.3
+25.1
−3.0

1.2
+7.6
−1.0

z̄ 0.50 0.59 0.59

λ̄ 20.80 19.96 19.79

L̄ 16.19 14.40 14.77

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.3
+2.0
−0.3

0.2
+1.0
−0.2

6.6
+4.0
−3.5

c200 9.2
+7.4
−6.8

11.3
+6.1
−7.1

10.7
+6.6
−6.5

ccor200 9.2
+7.4
−6.8

10.8
+5.8
−6.8

14.1
+8.7
−8.6

pcc 0.41
+0.39
−0.29

0.51
+0.34
−0.35

0.16
+0.31
−0.11

M0 2.1
+17.4
−1.8

89.8
+28.2
−44.0

1.7
+10.2
−1.5

z̄ 0.70 0.71 0.72

λ̄ 20.24 20.21 20.28

L̄ 16.43 15.10 14.52

λ > 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 17.5
+10.4
−6.8

10.1
+4.7
−2.8

27.8
+7.7
−7.5

c200 9.9
+6.0
−4.4

9.2
+6.5
−3.7

7.5
+4.5
−2.8

ccor200 9.9
+6.0
−4.4

8.8
+6.2
−3.5

7.9
+4.7
−2.9

pcc 0.42
+0.34
−0.22

0.62
+0.26
−0.26

0.24
+0.20
−0.11

z̄ 0.38 0.25 0.35

λ̄ 36.29 46.80 48.54

L̄ 26.73 34.24 32.24

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 2.0
+2.3
−1.6

7.6
+4.0
−2.3

8.3
+5.0
−3.2

c200 12.6
+5.2
−6.7

12.1
+5.2
−5.0

9.2
+6.0
−4.1

ccor200 12.6
+5.2
−6.7

13.7
+5.9
−5.7

10.5
+6.8
−4.7

pcc 0.65
+0.25
−0.33

0.64
+0.24
−0.25

0.46
+0.32
−0.22

z̄ 0.53 0.54 0.59

λ̄ 41.85 41.65 42.53

L̄ 29.70 31.06 30.41

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.9
+7.2
−0.9

3.7
+1.9
−1.4

5.5
+3.6
−2.0

c200 9.6
+6.9
−6.3

15.5
+3.2
−5.0

13.0
+4.9
−5.8

ccor200 9.6
+6.9
−6.3

17.5
+3.7
−5.7

15.3
+5.8
−6.8

pcc 0.43
+0.37
−0.31

0.76
+0.17
−0.25

0.64
+0.24
−0.26

z̄ 0.72 0.74 0.73

λ̄ 42.92 41.64 44.18

L̄ 34.38 30.74 31.72

λ < 30

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 4.3
+4.0
−2.0

11.6
+5.0
−4.3

5.6
+2.9
−1.5

c200 11.0
+5.7
−5.1

8.9
+7.4
−4.2

6.6
+7.9
−2.9

ccor200 11.0
+5.7
−5.1

9.8
+8.1
−4.6

6.8
+8.1
−3.0

pcc 0.51
+0.31
−0.28

0.35
+0.35
−0.16

0.59
+0.28
−0.28

z̄ 0.40 0.38 0.37

λ̄ 19.98 21.24 20.47

L̄ 14.60 15.51 14.80

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 3.8
+3.3
−1.7

1.7
+1.2
−0.6

6.5
+3.5
−2.4

c200 11.5
+5.6
−5.3

12.2
+5.3
−5.8

6.2
+5.4
−2.6

ccor200 11.5
+5.6
−5.3

11.4
+4.9
−5.4

6.6
+5.7
−2.7

pcc 0.56
+0.30
−0.29

0.62
+0.26
−0.28

0.42
+0.33
−0.21

z̄ 0.50 0.59 0.59

λ̄ 20.80 19.96 19.79

L̄ 16.19 14.40 14.77

∆M1−2 < −1.5 [−1.5,
−0.75]

[−0.75, 0]

M200 0.3
+2.1
−0.3

1.9
+0.9
−0.6

6.5
+4.0
−3.4

c200 9.2
+7.4
−7.0

15.3
+3.3
−5.1

10.8
+6.5
−6.5

ccor200 9.2
+7.4
−7.0

18.0
+3.9
−6.0

14.2
+8.6
−8.5

pcc 0.42
+0.38
−0.30

0.77
+0.16
−0.24

0.19
+0.32
−0.12

z̄ 0.70 0.71 0.72

λ̄ 20.24 20.21 20.28

L̄ 16.43 15.10 14.52

0.2 < z < 0.4 0.4 < z < 0.6 0.6 < z < 0.75

Table 5.1: Marginalised median values
for the parameters with 16th and 84th

percentiles, together with averages in z,
λ and L. M200 in 1013M⊙,M0 in
1011M⊙, and L in 1010L⊙, for the 3
models (up: Full,mid: σoff = 0.42h,low:
andM0 = 0)
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λ > 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 10.9
+10.9
−5.3

17.7
+11.1
−6.9

7.1
+8.1
−4.5

c200 7.6
+6.9
−4.4

7.6
+6.1
−3.8

8.2
+7.4
−5.1

ccor200 7.6
+6.9
−4.4

8.0
+6.4
−4.0

7.9
+7.1
−4.9

pcc 0.38
+0.38
−0.24

0.38
+0.33
−0.20

0.44
+0.37
−0.29

σoff 0.62
+0.19
−0.27

0.65
+0.17
−0.24

0.48
+0.28
−0.25

M0 14.9
+74.5
−14.4

11.3
+76.3
−10.8

3.7
+33.3
−3.4

z̄ 0.25 0.35 0.36

λ̄ 35.47 48.93 46.97

L̄ 25.76 34.19 30.69

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 3.7
+3.2
−2.9

8.1
+5.3
−3.4

2.7
+7.3
−2.5

c200 11.9
+5.8
−7.6

7.6
+7.5
−3.8

5.5
+8.9
−4.3

ccor200 11.9
+5.8
−7.6

8.1
+8.0
−4.1

5.4
+8.7
−4.2

pcc 0.61
+0.27
−0.33

0.31
+0.39
−0.20

0.38
+0.40
−0.28

σoff 0.50
+0.28
−0.28

0.34
+0.32
−0.15

0.57
+0.23
−0.29

M0 57.9
+88.4
−56.4

1.6
+13.0
−1.4

3.1
+23.8
−2.8

z̄ 0.53 0.54 0.59

λ̄ 40.94 41.96 42.81

L̄ 29.36 30.97 30.36

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 2.6
+7.9
−2.6

7.7
+7.4
−4.0

10.9
+12.7
−6.8

c200 10.2
+6.6
−6.2

7.7
+8.1
−4.7

7.8
+7.3
−4.7

ccor200 10.2
+6.6
−6.2

8.5
+9.0
−5.2

8.8
+8.3
−5.3

pcc 0.53
+0.32
−0.34

0.27
+0.42
−0.19

0.44
+0.36
−0.29

σoff 0.49
+0.28
−0.28

0.43
+0.30
−0.20

0.53
+0.25
−0.27

M0 38.7
+210.8
−38.0

1.9
+14.4
−1.7

5.2
+51.2
−4.9

z̄ 0.72 0.73 0.68

λ̄ 40.03 42.62 43.37

L̄ 30.78 31.56 30.79

λ < 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 15.2
+7.5
−5.8

6.5
+3.9
−2.1

12.9
+9.2
−6.2

c200 7.5
+7.1
−3.8

6.7
+5.6
−2.8

6.5
+7.9
−3.6

ccor200 7.5
+7.1
−3.8

6.2
+5.2
−2.6

6.4
+7.8
−3.6

pcc 0.16
+0.22
−0.09

0.49
+0.31
−0.23

0.17
+0.35
−0.12

σoff 0.40
+0.18
−0.14

0.52
+0.24
−0.24

0.40
+0.23
−0.16

M0 2.4
+17.6
−2.1

2.7
+18.0
−2.4

1.6
+10.9
−1.4

z̄ 0.40 0.38 0.37

λ̄ 19.99 20.94 20.66

L̄ 15.46 15.06 14.50

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 1.9
+2.1
−1.2

1.4
+1.1
−0.8

3.3
+3.3
−2.6

c200 9.6
+6.8
−6.1

10.0
+5.9
−5.3

9.6
+6.8
−5.9

ccor200 9.6
+6.8
−6.1

9.8
+5.8
−5.2

10.1
+7.1
−6.2

pcc 0.53
+0.32
−0.31

0.59
+0.28
−0.32

0.59
+0.28
−0.34

σoff 0.51
+0.27
−0.28

0.44
+0.32
−0.25

0.54
+0.25
−0.30

M0 6.4
+39.7
−6.0

5.8
+31.0
−5.4

26.5
+90.8
−25.8

z̄ 0.55 0.59 0.59

λ̄ 20.24 20.03 19.92

L̄ 15.52 14.79 14.20

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 0.6
+2.2
−0.5

0.8
+1.1
−0.7

13.1
+12.8
−7.7

c200 9.8
+6.7
−6.3

10.4
+6.5
−6.2

5.0
+7.5
−3.1

ccor200 9.8
+6.7
−6.3

10.7
+6.6
−6.4

6.6
+10.0
−4.0

pcc 0.50
+0.34
−0.34

0.54
+0.32
−0.33

0.14
+0.36
−0.11

σoff 0.51
+0.27
−0.27

0.50
+0.27
−0.28

0.45
+0.24
−0.19

M0 4.3
+37.3
−3.9

10.8
+35.0
−10.3

1.4
+9.2
−1.1

z̄ 0.73 0.71 0.66

λ̄ 20.04 20.31 20.55

L̄ 16.27 15.07 14.03

λ > 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 13.3
+8.2
−5.4

14.5
+6.2
−4.1

31.2
+10.9
−14.9

c200 9.2
+6.3
−4.2

6.9
+5.0
−2.4

9.1
+7.2
−6.1

ccor200 9.2
+6.3
−4.2

6.9
+5.1
−2.4

9.8
+7.8
−6.6

pcc 0.42
+0.34
−0.23

0.51
+0.30
−0.23

0.11
+0.45
−0.08

M0 3.2
+29.0
−2.9

2.0
+15.8
−1.8

1.1
+5.9
−0.9

z̄ 0.25 0.35 0.36

λ̄ 35.47 48.93 46.97

L̄ 25.76 34.19 30.69

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 1.7
+3.4
−1.6

6.5
+3.9
−2.3

8.3
+5.8
−3.3

c200 10.9
+6.4
−7.9

10.3
+6.0
−4.7

7.2
+6.9
−3.7

ccor200 10.9
+6.4
−7.9

11.6
+6.8
−5.3

8.4
+8.0
−4.3

pcc 0.56
+0.31
−0.36

0.54
+0.30
−0.25

0.49
+0.33
−0.27

M0 121.5
+58.7
−107.9

3.8
+36.1
−3.5

2.8
+23.4
−2.5

z̄ 0.53 0.54 0.59

λ̄ 40.94 41.96 42.81

L̄ 29.36 30.97 30.36

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 0.3
+2.9
−0.3

1.5
+2.7
−1.4

6.9
+6.5
−3.7

c200 10.5
+6.5
−6.6

12.6
+5.3
−7.2

7.6
+7.8
−4.8

ccor200 10.5
+6.5
−6.6

14.7
+6.2
−8.4

10.2
+10.5
−6.4

pcc 0.50
+0.34
−0.34

0.56
+0.30
−0.36

0.42
+0.36
−0.27

M0 259.2
+123.8
−172.2

103.2
+57.8
−97.4

2.8
+26.0
−2.5

z̄ 0.72 0.73 0.68

λ̄ 40.03 42.62 43.37

L̄ 30.78 31.56 30.79

λ < 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 7.2
+4.3
−2.9

5.3
+2.8
−1.4

11.6
+6.8
−4.9

c200 11.7
+5.3
−4.8

4.5
+5.1
−2.5

5.7
+7.3
−3.1

ccor200 11.7
+5.3
−4.8

4.3
+5.0
−2.4

6.0
+7.6
−3.3

pcc 0.39
+0.31
−0.20

0.70
+0.21
−0.33

0.31
+0.42
−0.20

M0 2.6
+24.2
−2.4

6.0
+39.3
−5.6

1.8
+11.5
−1.5

z̄ 0.40 0.38 0.37

λ̄ 19.99 20.94 20.66

L̄ 15.46 15.06 14.50

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 3.3
+3.6
−1.8

3.6
+2.1
−1.2

4.6
+3.3
−1.9

c200 10.7
+6.3
−5.8

7.4
+6.2
−3.1

5.8
+6.3
−3.0

ccor200 10.7
+6.3
−5.8

7.5
+6.2
−3.1

6.0
+6.4
−3.1

pcc 0.38
+0.38
−0.25

0.53
+0.31
−0.25

0.43
+0.34
−0.25

M0 2.5
+17.5
−2.2

1.4
+7.9
−1.1

2.1
+16.0
−1.8

z̄ 0.55 0.59 0.59

λ̄ 20.24 20.03 19.92

L̄ 15.52 14.79 14.20

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 0.2
+0.9
−0.2

1.1
+1.3
−1.0

5.1
+4.8
−2.8

c200 10.2
+6.7
−6.8

11.2
+5.8
−6.5

7.2
+8.9
−5.0

ccor200 10.2
+6.7
−6.8

13.1
+6.9
−7.6

9.7
+12.1
−6.7

pcc 0.47
+0.34
−0.33

0.55
+0.31
−0.35

0.23
+0.42
−0.17

M0 3.3
+24.7
−3.0

46.3
+35.0
−44.2

1.5
+9.0
−1.2

z̄ 0.73 0.71 0.66

λ̄ 20.04 20.31 20.55

L̄ 16.27 15.07 14.03

λ > 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 13.0
+8.0
−5.0

14.6
+6.0
−4.0

32.0
+10.7
−14.6

c200 9.6
+6.2
−4.2

7.2
+5.0
−2.5

9.8
+7.0
−6.5

ccor200 9.6
+6.2
−4.2

7.3
+5.1
−2.5

10.6
+7.6
−7.1

pcc 0.47
+0.32
−0.24

0.52
+0.29
−0.23

0.10
+0.40
−0.07

z̄ 0.25 0.35 0.36

λ̄ 35.47 48.93 46.97

L̄ 25.76 34.19 30.69

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 4.8
+2.7
−1.6

6.5
+3.7
−2.2

8.3
+5.5
−3.0

c200 14.7
+3.8
−5.4

11.3
+5.5
−4.6

7.8
+6.6
−3.8

ccor200 14.7
+3.8
−5.4

11.6
+5.6
−4.7

8.1
+7.0
−4.0

pcc 0.74
+0.18
−0.25

0.58
+0.27
−0.24

0.53
+0.31
−0.27

z̄ 0.53 0.54 0.59

λ̄ 40.94 41.96 42.81

L̄ 29.36 30.97 30.36

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 3.9
+5.4
−3.7

3.9
+2.0
−1.2

7.4
+6.6
−3.7

c200 13.4
+4.7
−6.8

15.5
+3.2
−5.0

8.4
+7.6
−5.1

ccor200 13.4
+4.7
−6.8

15.5
+3.3
−5.0

8.9
+8.1
−5.4

pcc 0.67
+0.23
−0.34

0.74
+0.18
−0.25

0.43
+0.35
−0.26

z̄ 0.72 0.73 0.68

λ̄ 40.03 42.62 43.37

L̄ 30.78 31.56 30.79

λ < 30

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 6.9
+4.2
−2.7

5.9
+2.9
−1.4

11.7
+6.7
−4.8

c200 12.2
+5.0
−4.8

6.1
+7.2
−2.2

6.1
+7.5
−3.3

ccor200 12.2
+5.0
−4.8

6.0
+7.1
−2.1

6.4
+7.9
−3.5

pcc 0.44
+0.32
−0.20

0.66
+0.24
−0.31

0.32
+0.40
−0.20

z̄ 0.40 0.38 0.37

λ̄ 19.99 20.94 20.66

L̄ 15.46 15.06 14.50

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 3.5
+3.5
−1.8

3.5
+2.1
−1.2

4.6
+3.3
−1.8

c200 10.9
+6.2
−5.7

7.7
+6.4
−3.2

6.5
+6.1
−3.2

ccor200 10.9
+6.2
−5.7

7.7
+6.4
−3.2

6.6
+6.2
−3.3

pcc 0.42
+0.36
−0.25

0.55
+0.29
−0.25

0.47
+0.33
−0.25

z̄ 0.55 0.59 0.59

λ̄ 20.24 20.03 19.92

L̄ 15.52 14.79 14.20

∆M1−4 < −2 [−2, −1] [−1, 0]

M200 0.2
+1.0
−0.2

1.9
+1.2
−0.6

5.2
+4.9
−2.8

c200 10.6
+6.4
−6.8

13.8
+4.3
−5.2

7.3
+9.0
−4.9

ccor200 10.6
+6.4
−6.8

16.9
+5.2
−6.3

9.7
+12.0
−6.6

pcc 0.49
+0.35
−0.33

0.71
+0.20
−0.26

0.25
+0.42
−0.18

z̄ 0.73 0.71 0.66

λ̄ 20.04 20.31 20.55

L̄ 16.27 15.07 14.03

0.2 < z < 0.4 0.4 < z < 0.6 0.6 < z < 0.75

Table 5.2: Marginalised median values
for the parameters with 16th and 84th

percentiles, together with averages in z,
λ and L. M200 in 1013M⊙,M0 in
1011M⊙, and L in 1010L⊙, for the 3
models (up: Full,mid: σoff = 0.42h,low:
andM0 = 0)
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5.3 odel omparison

e different models, with 5, 4, or 3 parameters, have been looked
into by comparing the median values and percentiles calculated
from the posterior distributions. By looking at the tables 5.1 &
5.2 one can see that there is no distinguishable difference between
the three models. For an example, we look into the masses and
concentrations of two examples of stacks under the three models,
which are displayed in the table 5.3.
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Figure 5.4: 2D histograms depied by
curves at half-maximum and 1/4 maximum
for comparison between different models.
On the upper panel, it is shown the
∆M1−2 seleed, large magnitude gap, high
λ, low z stack. On the lower, everything the
same, but with the low λ stack.

We also illustrate some differences in the models comparing 2D
histograms for mass and concentrations in the ∆M1−2 defined
stacks in figure (5.4). is figure displays only the first 2 redshift
divisions comparing the full 5 parameter model with the 4
parameter model that has constrained charaeristic miscentering
length σoff = 0.42 h Mpc.
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is change does not alter significantly the results, but in the
high-richness, low redshift, stacks (upper right) pair of panels, the
small gap stacks tend to display a shift to higher concentrations
when the miscentering length is fixed.

5 parameter 4 parameter 3 parameter

Large ∆M1−2, low z, high λ

Masses
[
1014M⊙

]
1.6+1.0

−0.7 1.8+1.1
−0.7 1.8+1.0

−0.7

Concentrations 8.9+6.5
−4.0 9.6+6.2

−4.3 9.9+6.0
−4.4

Small ∆M1−2, low z, low λ

Masses
[
1014M⊙

]
5.7+4.6

−2.2 4.9+3.0
−1.7 5.6+2.9

−1.5

Concentrations 5.1+6.4
−3.2 4.6+7.3

−3.0 6.6+7.9
−2.9

Table 5.3: Comparison between quantiles
out of different models, showing no
significant difference

Overall, the models seems compatible one between another,
however, a full model comparison was left for future work.
e data does have low SNR we do not foresee that to yield
a definitive better model. is and alternatives will be better
discussed in the last chapter 6.

5.4 asses & oncentrations
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Figure 5.5: Posterior distributions for
masses and concentrations of all stacks
for ∆M1−2, in the 3 parameter model.
Each pair mass/concentration side by side
represent a bin in richness and redshift, with
colours distinguishing between magnitude
gaps.

e mass and concentration posterior distributions represents
the first objeive result of this work (Fig. 5.5) . It is usually the
case that masses are better constrained with weak lensing studies
than concentrations, as many other effes, such as miscentering,
can introduce biases in concentrations and the radial position of
the scale radius rs is harder to constrain than the overall curve
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height. All of the posteriors obtained for masses look sharp in
logarithmic units of solar masses on the plots, relatively to the
very wide priors adopted. e concentration parameters, on the
other hand, display spread out posteriors. with peaks in lower
values, but long, non-vanishing tails towards higher values, as the
algorithm did not distinguish between concentrations and other
effes. Converting masses back to the linear scale, however, we
find that the average relative size of the 68%CL regions is roughly
the same for both c200 and M200, with ⟨δc200/c200⟩ = 0.22 and
⟨δM200/M200⟩ = 0.24.

e masses and concentrations we have obtained were
compared to the c−M relation of Duffy et al. [2008], as displayed
in Fig. 5.6. For ∆M1−2 the c200 and M200 are moderately
correlated within the 3-parameter model (Spearman ρ =
−0.56,p = 0.06), but slightly less so with 4 or 5 parameters,
(ρ = −0.49,p = 0.10) and (ρ = −0.50,p = 0.09), respeively.
For ∆M1−4, this correlation weakens considerably and reverses
the tendency of diminishing in models with higher degrees of
freedom with (ρ = −0.09,p = 0.78), (ρ = −0.26,p = 0.41),
and(ρ = −0.42,p = 0.17) for 3, 4, and 5 parameter models
respeively.

Figure 5.6: Masses and concentrations for
the 2 lower redshift bins, using 5 and 3
parameters. e gray lines in the background
are indications of the slope of the Duffy
c−M relation Duffy et al. [2008]
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Using the Duffy et al. [2008] c−M relation, we have calculated
correed parameter distributions for the concentrations for each
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4 aually by counting how many results we
have above zero

λ× z set, by using:

ccorr200 = c200

(
M ′

200

M200

)−0.13

, (5.1)

where, for each set, we corre the intermediate and small ∆M
concentrations by the mass (M ′

200) of the one with the largest
∆M , so that concentrations can be compared in "equal-mass
frame". en, we have calculated the distribution of differences of
randomly seleed pairs of random draws of the ccorr200 distributions
between the members of the set in all combinations (Fig. 5.7).

We integrate these distributions in [0,∞]4 to calculate the
overall probability that the first quantity is larger than the second,
to see how probable it is, from the data that samples with larger
average magnitude gaps display larger average concentrations.
In most cases, the high-low difference probability tends to be
closer to the middle-low difference, whereas the high-middle
concentration difference distribution seemed to closer to the
uniform random chance (0.5) that one is higher than the
other (Tb. 5.4). However, none of these probabilities depart
significantly from the average, in a way that would firmly suggest
a difference of concentrations between samples of different
magnitude gaps.

P
[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.62 P

[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.55

λ > 30 P
[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆Mmid
1−2 )

]
: 0.55 P

[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆Mmid
1−2 )

]
: 0.42

P
[
ccorr200 (∆Mmid

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.57 P

[
ccorr200 (∆Mmid

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.63

P
[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.67 P

[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.72

λ < 30 P
[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆Mmid
1−2 )

]
: 0.53 P

[
ccorr200 (∆Mhigh

1−2 ) > ccorr200 (∆Mmid
1−2 )

]
: 0.52

P
[
ccorr200 (∆Mmid

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.64 P

[
ccorr200 (∆Mmid

1−2 ) > ccorr200 (∆M low
1−2)

]
: 0.72

0.2 < z < 0.4 0.4 < z < 0.6
Table 5.4: Probabilities for the parameters
between two different magnitude gaps
∆M1−2 calculated by integrating the
distribution of differences of random
draws from the Markov chains, using the
3-parameter (σoff = 0.42hMpc, no CG
baryonic component) model.

Finally, for the sake of completeness, we have performed Fisher's
method [Mosteller and Fisher, 1948] to combine results of
different redshifts and richness into a single probability. e
method consists in asserting that a colleion of k independent
tests yielding probabilities pi of rejeing the null hypothesis when
it is true, is related to a χ2 distribution with 2k degrees of freedom
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Figure 5.7: Posterior distributions for masses
and concentrations of all stacks for ∆M1−2,
in the 3 parameter model.

through

χ2
2k ∼ −2

k∑
i

ln(pi) (5.2)

which can then be used to be calculated the new combined
probability by

p = 1− γ(k, x/2)

Γ(k)
(5.3)

where γ(k, x) is the lower incomplete gamma funion. We
have used our probabilities Pi in the table 5.4 to interpret the
pi = 1 − Pi as "p-values", and combined them into overall ps
(table below) which remain far from statistically significant.
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Table 5.5: Probabilities for rejeing one of
the 4 null-hypotheses given that it is true of
each set of concentration differences for each
of the sets of concentration differences.

ccorr200 (∆Mhigh
1−2 ) < ccorr200 (∆M low

1−2) p = 0.60

ccorr200 (∆Mhigh
1−2 ) < ccorr200 (∆Mmid

1−2 ) p = 0.32

ccorr200 (∆Mmid
1−2 ) < ccorr200 (∆M low

1−2) p = 0.59

5.5 ystem uminosities andM/L

Finally, we have investigated luminosities and mass-to-light
ratios of systems following Khosroshahi et al. [2007], Proor
et al. [2011], in order search for differences between the larger
and smaller magnitude gap populations. Using the calculated
M200 we divide by the average i-band luminosity of each stack
to look for any peculiarity among different stacks in magnitude
gaps. We have not found any substantial differences between the
populations. In the figure 5.8 we rank together all 3 different
tracers of mass to each other.
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Figure 5.8: Results for the 3 main tracers of
system mass: theM200 from weak lensing
measurements, the average redMaPPer
richness λ̄ for each stacks, and the average
luminosity λ̄, also from the redMaPPer
catalogue.

Luminosities are highly correlated with richness (ρ = 0.94,p =
0.01), as one would expe not only since they are intrinsically
conneed, but also because luminosity is one of the filters of the
redMaPPer algorithm, which tries to optimise member seleion
so that the richness λ is related to the mass. Between the other
two mass tracers, M200

Luminosities and richness, unlike the other stack derived
parameters, can be direly compared to magnitude gaps obje
by obje, as they are given by the redmapper catalogue. However
no significant correlation was found between the two variables
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Figure 5.9: Plot for all objes, magnitude
gap ∆M1−2 by i-band luminosity by
redMaPPer.
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(ρ = −0.06, p = 0.02).

5.6 revious iterature esults

It is thought that the concentration parameter codifies some
information about the local environment at the time of the
collapse of halos and, consequently, information of their
formation epoch [Khosroshahi et al., 2007, Navarro et al.,
1995]. Accordingly, we expe that if magnitude gaps are
indeed indicators of earlier mass accretion bias, that a higher
magnitude gap would be correlated to higher concentrations,
as concentration tends to be higher in dark matter halos with
early formation epochs. After analysing our data, we do not find
evidence neither to support nor to rule out these statements.

As it can be seen in figure 5.10, our points are placed in the
middle way between the more massive clusters and the c − M

relations used by Khosroshahi et al. [2007], and the largest of
the fossil groups. As our largest magnitude gap samples were
not seleed as optical fossil candidates, but only by having
larger magnitude gaps among the total set, it is possible that
they represent transitional ensembles between fossils and non-
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Figure 5.10: e c − M relation of
Khosroshahi et al. [2007], Left: caption
from the original: Comparison between
the mass concentration in fossils and non-
fossil groups and clusters. ree fossils
with resolved temperature profile and two
isolated OLEGs (diamonds) are compared
with non-fossil clusters (open squares) from
Pratt and Arnaud [2005]. e expeed
values of the dark matter concentration and
its variation with the halo mass from the
numerical studies of Dolag et al. [2004] and
Bullock et al. [2001] also are presented. e
reasonable agreement between the non-fossils
mass concentration from Pratt and Arnaud
[2005] with the dark matter concentration
from the study of Dolag et al. [2004] suggest
that the excess concentration in fossils is
due to their dark matter concentrations.
In low mass end, two recent estimates
(90%confidence) for the concentration
of NGC 6482, after accounting for the
baryonic matter (see Humphrey et al. [2006]
for details) are also shown (blue) which again
lie above the numerical expeations.Right:
e superimposed points from this work.

fossils, on the concentration excess scale. However, our data is not
statistically significant to direly support these affirmations.

For mass-to-light ratios, there has been confliing findings
for fossil groups. [Vikhlinin et al., 1999], for example, finds
high mass-to-light ratios for OLEGs (verluminous elliptical
galaxies), while Khosroshahi et al. [2004, 2007] found ratios
that even if in the upper envelope of the distribution, are not
altogether exceptional. As before, we find no evidence to support
a correlation between magnitude gaps and higher M/L ratios.

5.7 A ote oniscentering and entral
aryonic omponent

e issue of cluster miscentering is of central importance in cross-
correlation lensing studies. As seen in figure 4.7 on chapter 4
and in the literature [Ford et al., 2015, Johnston et al., 2007,
Shan et al., 2015] a combination of miscentered profiles will
alter the shear map radial distribution shape, lowering the inner
radii average shears. As a result, large fraions of miscentered
clusters will add important effes on the overall profile - and
therefore on inferred mass and concentrations. For an example
of crucial importance in this work, miscentering can mimic lower
concentration values for NFW models [Ford et al., 2015].
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In the light of these statements, it is tempting to try fitting both
pcc and σoff as (non-nuisance) parameters on their own right, as
a means to investigate the issue. However, a strong degeneracy
between the pcc and σoff , and the lack of counts in each stack
limits the constraining power considerably. Furthermore,
projeion effes in small stacks can also distort the shape of
the profile in much the same way as miscentering does. is is
expeed to be mitigated by larger stacks, as it is a purely random
effe, but not in the scale of the this work.

Figure 5.11: e probability distribution
for the miscentered fraion is given
by the distribution of correly centred
probabilities as calculated by the redMaPPer.
e piure shows this distribution for the
whole ensemble, but each stack has its own
distribution calculated.
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In the end, as in Johnston et al. [2007], we find very little
power to for these results, and have thus tested for fixed parameter
models. We have tried, however, to investigate the relationship
between the probability of misidentified cluster centre from the
redMaPPer catalogue with the calculated miscentered fraion
parameter for our stacks.

e expeed distribution of pccs can be properly evaluated by
a Monte-Carlo method, by sorting out against the redMaPPer
corre centring probability and checking the miscentered obje
fraion resulting from the tests, much in the same way we tried
at first with magnitude gaps. e redMaPPer catalogue lists two
probabilities for the 5 most-likely CG candidates: PCEN and
QCEN which are, respeively, the probability of the galaxy being



   119

the corre centre galaxy, and the same probability, but now
accounting for the fa that the CG may have not been listed as
a cluster member by the algorithm. ese second probabilities are
then always lower, and sometimes much lower than the former as
we can see in Fig. 5.11.
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Figure 5.12: e probability distribution
for the miscentered fraion is given
by the distribution of correly centred
probabilities as calculated by the redMaPPer.
e piure shows this distribution for the
whole ensemble, but each stack has its own
distribution calculated.

e result of the MC test of the expeed distribution of pMC
cc =

0.47(15), taking into account the whole 1502 systems sample
using the galaxy with the highest QCEN as the probability for each
obje, agrees closely to the average fitted pcc = 0.48(1) from the
data. As such, we conclude this note by indicating that QCEN may
better represent the aual probability of a redMaPPer cluster to
be correly centred, and that the expeed fraion of miscentered
clusters in a stack of redMaPPer objes can be well represented by
a normal distribution P (pcc) = N (p̄cc = 0.48, σpcc = 0.01).





6

onclusions and erspeives

W    by reviewing its main contents
into few remarks and conclusions, and then we turn to examine
future perspeives that these results suggest us.

After presenting the whole scenario, from the earliest
cosmological times to the formation and evolution of galaxy
systems, we posed the question about whether galaxy systems
with overly dominant central galaxies are a peculiar population or
just statistical outliers. In particular, we have investigated possible
relationships between galaxy system magnitude gaps and masses,
concentrations, and mass-to-light ratios.

From the information we have obtained, we draw the following
conclusions:

• we have found inconclusive evidence on the subje of
magnitude gaps and concentrations; and

• we have not found evidence to support that larger magnitude
gap systems have greater mass-to-light ratios.

Had we found a significant correlation between the magnitude
gaps and concentrations, it would have lent credibility to the idea
that fossil groups and clusters really represent mature struures in
the universe, as it is strongly believed that more relaxed clusters
tend to be more concentrated, because of some of the effes
listed in chapter 2. However, the low number of systems present
difficulties to evaluate their charaeristics - a problem that near
future surveys may overcome.

roughout the course of this work, we have also developed
an acquaintance with the modern technique of cross-correlation
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lensing, and developed prototype software that can be easily
adapted to future work in larger samples, such as that coming
from the future J-PAS cluster catalogue [Benítez et al., 2015].
All the software will be available online with P
N for easy application and study.

As a next step, we plan to examine more closely the effe of
seleing clusters by Qcen from the redMaPPer catalogue on the
fraion of correly centred clusters pcc in an attempt to constrain
the model to better assess the parameters of our interest, namely
M200 and c200. Furthermore, we want to use Bayesian model
comparison to evaluate the better option among the previously
described models, with 3, 4, and 5 parameters.

Another complementary possibility, alternative to cross-
correlation lensing, is to perform a multiple fit to all individual
systems, still divided into redshift bins, simultaneously, where
the log-likelihood is the sum of all the log-likelihoods for each
system, and the fit constrain is a mass-concentration relation. e
colleion of these results and whatever finds we may encounter
will be sent for publishing in the near future.
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