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Anisotropy within and beneath continental lithosphere is often studied
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with a technique called shear wave splitting. The wave is split into two shear

waves, polarized in the fast and slow directions and accumulates a delay time along with their paths. To measure the effect of splitting we use a Mat-
lab-based environment called SplitRacer, presented by Reiss and Rumpker, 2017. The shear wave splitting analyses is based on the minimum transverse
energy method by Silver and Chan, 1991. A compilation of previous fast directions in South America, together with new results from stations from the
Brazilian Seismograph Network (RSBR) are presented. In general, in the stable part of South America, most fast directions are oriented roughly parallel
to the absolute plate motion, however, in the southern part of the Parand Basin, the fast directions suggest that the observed anisotropies have a contribu-

tion from asthenospheric flow deflected by a deeper lithospheric root.

2.INTRODUTION

Previous studies of S-wave splitting concentrated in the Andes and in
SE Brazil. We added new measurements near the Pantanal, eastern
Chaco and western part of the Paran4 basins to better understand the an-
isotropy properties of the upper mantle in S. America and investigate the
lithospheric evolution of these basins.

2.2 Shear Wave Splitting

When a core-refracted S-wave travels through an anisotropic media, it
is split into two orthogonal components with different velocities.
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» The direction of the fast component
gives us the direction of anisotropy @;

» The time difference 6t is related to the
extent and strength of the anisotropic
layer.
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Figure 1: When a shear wave passes through an anisotro-
pic layer it is split in two orthogonal directions with differ-
ent velocities (A Wiistefeld et al, 2008).

2.3 Continental Anisotropy
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Figure 2: Frozen anisotropy with olivine alignment.

Two main hypotheses explain the origin of
continental anisotropy: i) Crystallographic pre-
ferred orientation of minerals due to strain cor-
related with surface geological features from
present and past orogenic activity "frozen an-
isotropy" (Savage, 1999);
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ii) alignment of olivine a-axis in the direc-

tion of shear through dislocation creep in- ml —
duced by mantle flow or APM. = ‘
J_, xKs/

Figure 3: Alignment of olivine due to mantle flow.

3.RESULTS

We used the SplitRacer environment (Reiss and Rumpkim, 2017)
minimizing the transverse energy, as in Silver and Chan (1991).
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Overview of single splitting results of fast directions and delay times
for the station TRCB (RSBR network):
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[Distribution of splitting parameters for station TRCE
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When the incoming S
wave is polarized in the
same direction or per-
pendicular to the aniso-
tropic layer, there will be
no splitting and no mea-
surement can be made.
However, NULL events
are important as their
back-azimuth represents
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One layer joint inversion of all waveforms to find the pair of splitting
parameters which best minimizes the energy on all events of the station
TRCB:

rameters.
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Huction after applying the
nverse splitting operator.

Results of all stations analyzed so far compared to S-wave anomaly to-
mography (Assumpcao et al. 2013) at 100km depth:

Bar orientations are fast anisotropy direc-
tions and lengths are delay times. Gray bars
are previous results (Assumpcao et al, 2011)
and black bars are from this study. It is pos-
sible to see a major trend close to the
HS3-NUVEL-1A model of APM. However,
in the southern part of the Parana basin, the
directions suggest a contribution from as-
thenospheric flow deflected by a deep litho-
spheric root.
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4. NEXT STEPS SN S

» Analyses of stations from the XC network;
» In the case of fossil lithospheric anisotropy: how does it correlate with

resents a GOOD measurement.
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ponent; the lithospheric evolution of the Pantanal and Parana-Chaco bajig?
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